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(1) A universal equation for the shape of an egg
Date: 

August 31, 2021 
Source: 

University of Kent 
Summary: 

Researchers have discovered a universal mathematical formula that can describe 
any bird's egg existing in nature -- a significant step in understanding not only the egg
shape itself, but also how and why it evolved, thus making widespread biological and 
technological applications possible. 

Researchers from the University of Kent, the Research Institute for Environment Treatment
and Vita-Market Ltd have discovered a universal mathematical formula that can describe 
any bird's egg existing in nature, a feat which has been unsuccessful until now.

Egg-shape has long attracted the attention of mathematicians, engineers, and biologists 
from an analytical point of view. The shape has been highly regarded for its evolution as 
large enough to incubate an embryo, small enough to exit the body in the most efficient 
way, not roll away once laid, is structurally sound enough to bear weight and be the 
beginning of life for so many species. The egg has been called the "perfect shape."

Analysis of all egg shapes used four geometric figures: sphere, ellipsoid, ovoid, and 
pyriform (conical or pear-shaped), with a mathematical formula for the pyriform yet to be 
derived.

To rectify this, researchers introduced an additional function into the ovoid formula, 
developing a mathematical model to fit a completely novel geometric shape characterized 
as the last stage in the evolution of the sphere-ellipsoid, which it is applicable to any egg 
geometry.

This new universal mathematical formula for egg shape is based on four parameters: egg 
length, maximum breadth, shift of the vertical axis, and the diameter at one quarter of the 
egg length.

This long sought-for universal formula is a significant step in understanding not only the 
egg shape itself, but also how and why it evolved, thus making widespread biological and 
technological applications possible.

Mathematical descriptions of all basic egg shapes have already found applications in food 
research, mechanical engineering, agriculture, biosciences, architecture and aeronautics. 
As an example, this formula can be applied to engineering construction of thin walled 
vessels of an egg shape, which should be stronger than typical spherical ones.

This new formula is an important breakthrough with multiple applications including:

1. Competent scientific description of a biological object. Now that an egg can be 
described via mathematical formula, work in fields of biological systematics, 



optimization of technological parameters, egg incubation and selection of poultry will
be greatly simplified. 

2. Accurate and simple determination of the physical characteristics of a biological 
object. The external properties of an egg are vital for researchers and engineers 
who develop technologies for incubating, processing, storing and sorting eggs. 
There is a need for a simple identification process using egg volume, surface area, 
radius of curvature and other indicators for describing the contours of the egg, 
which this formula provides. 

3. Future biology-inspired engineering. The egg is a natural biological system studied 
to design engineering systems and state-of-the-art technologies. The egg-shaped 
geometric figure is adopted in architecture, such as London City Hall's roof and the 
Gherkin, and construction as it can withstand maximum loads with a minimum 
consumption of materials, to which this formula can now be easily applied.

Darren Griffin, Professor of Genetics in the University of Kent and PI on the research, said:
"Biological evolutionary processes such as egg formation must be investigated for 
mathematical description as a basis for research in evolutionary biology, as demonstrated 
with this formula. This universal formula can be applied across fundamental disciplines, 
especially the food and poultry industry, and will serve as an impetus for further 
investigations inspired by the egg as a research object."

Dr Michael Romanov, Visiting Researcher at the University of Kent, said: "This 
mathematical equation underlines our understanding and appreciation of a certain 
philosophical harmony between mathematics and biology, and from those two a way 
towards further comprehension of our universe, understood neatly in the shape of an egg."

Dr Valeriy Narushin, former visiting researcher at the University of Kent, said: "We look 
forward to seeing the application of this formula across industries, from art to technology, 
architecture to agriculture. This breakthrough reveals why such collaborative research 
from separate disciplines is essential."

The paper "Egg and math: introducing a universal formula for egg shape" is published in 
Annals of the New York Academy of Sciences (Valeriy G. Narushin, Research Institute for 
Environment Treatment and Vita-Market Ltd, Ukraine; Dr Michael N. Romanov, University 
of Kent; Professor Darren K. Griffin, University of Kent).

Story Source: Materials provided by University of Kent. Original written by Sam Wood. 
Note: Content may be edited for style and length.

Journal Reference:

1. Valeriy G. Narushin, Michael N. Romanov, Darren K. Griffin. Egg and math: 
introducing a universal formula for egg shape. Annals of the New York 
Academy of Sciences, 2021; DOI: 10.1111/nyas.14680 
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(2) The Mathematically Defined Egg
10 September 2021 

We're marking a unique achievement today, the development of which has eluded 
mathematicians, biologists, and fowl farmers for centuries: a universal formula for avian 
eggs! 

Here's a diagram we created to mark the occassion, followed by the formula presented in 
a recently published paper by Valeriy G. Narushin, Michael N. Romanov, and Darren K. 
Griffin. 

http://dx.doi.org/10.1111/nyas.14680
https://1.bp.blogspot.com/-tOwdWkc_bOc/YTUrknMwC3I/AAAAAAAAWZM/YFWaewyMwg4mRelA1FGFe95Q5_1u5oDJACLcBGAsYHQ/s0/narushin-romanov-griffin-universal-avian-egg-formula-2020.png


The press release issued by the University of Kent explains what's now possible because 
of the development of a universal formula for bird eggs: 

This new formula is an important breakthrough with multiple applications 
including: 

1. Competent scientific description of a biological object. Now that an egg 
can be described via mathematical formula, work in fields of biological 
systematics, optimization of technological parameters, egg incubation 
and selection of poultry will be greatly simplified; 

2. Accurate and simple determination of the physical characteristics of a 
biological object. The external properties of an egg are vital for 
researchers and engineers who develop technologies for incubating, 
processing, storing and sorting eggs. There is a need for a simple 
identification process using egg volume, surface area, radius of 
curvature and other indicators for describing the contours of the egg, 
which this formula provides; 

3. Future biology-inspired engineering. The egg is a natural biological 
system studied to design engineering systems and state-of-the-art 
technologies. The egg-shaped geometric figure is adopted in 
architecture, such as London City Hall’s roof and the Gherkin, and 
construction as it can withstand maximum loads with a minimum 
consumption of materials, to which this formula can now be easily 
applied. 

The "Gherkin" is the nickname of a visually distinctive building at 30 St. Mary Axe in 
London. The next time any architects want to make a building that looks like an egg, they'll
finally have the math to make it happen! 
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The egg, as one of themost traditional food products, has long attracted the attention ofmathematicians, engineers,
and biologists from an analytical point of view. As amain parameter in oomorphology, the shape of a bird’s egg has,
to date, escaped a universally applicable mathematical formulation. Analysis of all egg shapes can be done using
four geometric figures: sphere, ellipsoid, ovoid, and pyriform (conical or pear-shaped). The first three have a clear
mathematical definition, each derived from the expression of the previous, but a formula for the pyriform profile
has yet to be derived. To rectify this, we introduce an additional function into the ovoid formula. The subsequent
mathematical model fits a completely novel geometric shape that can be characterized as the last stage in the evolu-
tion of the sphere—ellipsoid—Hügelschäffer’s ovoid transformation, and it is applicable to any egg geometry. The
required measurements are the egg length, maximum breadth, and diameter at the terminus from the pointed end.
This mathematical analysis and description represents the sought-for universal formula and is a significant step in
understanding not only the egg shape itself, but also how and why it evolved, thus making widespread biological
and technological applications theoretically possible.

Keywords: egg geometry; egg shape; pyriform ovoid; Hügelschäffer’s model; oomorphology; universal formula

Introduction

Described as “the most perfect thing,”1 the egg
has always been considered a major food source
in human history and nutrition. It is also one of
the most recognizable shapes in nature and an
example of evolutionary adaptation to the most
diverse range of environmental conditions and
situations. These include extremes of heat and
humidity, incubation with or without body heat, in
or out of nests, and/or from clean to highly infected
environments. Moreover, the practical issues of
evolving a shape that is large enough to incubate an
embryo, small enough to exit the body in the most
efficient way, not roll away once laid, and be struc-
turally sound enough to bear weight, are all primary
considerations of a remarkable structure that is a
feature of over 10,500 extant bird species, including

those used for egg production and consumption
by people. The recent appreciation that birds are
living dinosaurs also opens up a whole new line of
enquiry in studies of themost well-known of extinct
species. The egg shape is, thus, most worthy of a
full mathematical analysis and description. Despite
this, a geometric characterization of “oviform” or
“egg-shaped” (a term used in common parlance)
that is universally applicable to the eggs of all birds
has belied accurate description by mathematicians,
engineers, and biologists.2 Various attempts to
derive such a standard geometric figure in this
context that, like many other geometric figures,
can be clearly described by a mathematical formula
are nonetheless over 65 years old.3 Such a univer-
sal formula potentially would have applications
in biological science, physics, engineering, and

doi: 10.1111/nyas.14680
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Figure 1. Basic egg shape outlines based on Nishiyama:6 (A) circular, (B) elliptical, (C) oval, and (D) pyriform.

technology where oomorphology (i.e., the study of
egg shape)4 is an important aspect of research and
development in disciplines, such as food quality,
food engineering, poultry breeding and farming,
ornithology, genetics, species adaptation, evolution,
systematics, architecture, and artwork.
We believe that a universal mathematical egg

model would be a prerequisite and an important
breakthrough for widespread applicability for many
other investigations in corresponding fields of
science and technology, such as (1) comprehensive
scientific definition of this biological object, (2)
accurate and simple calculation of its physical
characteristics, and (3) bionics.5
According to Nishiyama,6 all profiles of eggs

can be described in four main shape categories:
circular, elliptical, oval, and pyriform (conical or
pear-shaped) (Fig. 1A–D). A circular profile indi-
cates a spherical egg; elliptical an ellipsoid; oval an
ovoid and so on. Precise mathematical formulae
have hitherto only been achieved for the simpler
(e.g., spherical, elliptical, etc.) forms, however.
Many researchers have identified to which shape

group a particular egg can be assigned, and thus
developed various indices to help make this defi-
nition more accurate. Historically, the first of these
indices was the shape index (SI) of Romanoff and
Romanoff,7 which is the ratio of maximum egg
breadth (B) to egg length (L). SI has been mainly
employed in the poultry breeding industry to eval-
uate the shape of chicken eggs and sort them. Its
disadvantage is that, according to this index, one
can only judge whether or not an egg falls into
the group of circular shape. With each subsequent
study, there have been more and more other indices
that have been devised. That is, while the early
studies8 limited themselves to the usefulness of
such egg characteristics as asymmetry, bicone, and

elongation, the later ones increased the number of
indices to seven,4 and even to 10.9 The purpose of
the current study was to take this research to its ulti-
mate conclusion to present a universal formula for
calculating the shape of any egg based on reviewing
and reanalysis of the main findings in this area.

Theory

In parallel to the process of developing various egg
shape indices, a broader mathematical insight into
comprehensive and optimal description of the nat-
ural diversity of egg shapes warrants further study.
The definition of the groups of circular and elliptical
egg shapes (Fig. 1A and B) is relatively straightfor-
ward since there are clear mathematical formulae
for the circle and ellipse. Tomathematically describe
oval and pyriform shapes (Fig. 1C and D), however,
new theoretical approaches are necessary.
Preston3 proposed the ellipse formula as a basis

for all egg shape calculations.Multiplying the length
of its vertical axis by a certain function f(x) (which
he suggested to be expressed as a polynomial),
Preston showed that most of the eggs studied could
be described by a cubic polynomial, although for
some species, a square or even linear polynomial
would suffice. This mathematical hypothesis turned
out to be so effective that most of the further
research in this area was aimed solely at a more
accurate description of the function f(x). Most
often, this function was determined by directly
measuring the tested eggs, after which the data
were subjected to a mathematical processing using
the least squares method. As a result, a function
could be deduced that, unfortunately, would be
adequate only to those eggs that were involved in
the experiment.10–12 Some authors13,14 applied the
circle equation instead of ellipse as the basic for-
mula, but the principle of empirical determination

2 Ann. N.Y. Acad. Sci. 1 (2021) 1–9 © 2021 New York Academy of Sciences.
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of the function f(x) remained unchanged. Several
attempts were made to describe the function f(x)
theoretically in the basic ellipse formula;15,16 how-
ever, for universal and practical applicability to
all eggs (rather than just theoretical systems), it is
necessary to increase the number of measurements
and the obtained coefficients.
The main problem of finding the most conve-

nient and accurate formula to define the function
f(x) is the difficulty in constructing graphically
the natural contours corresponding to the classical
shape of a bird’s egg.17–19 Indeed, all the reported
formulae have a common flaw; that is, although
these models may help define egg-like shapes in
works of architecture and art, they do not accurately
portray real-life eggs for practical and research pur-
poses. This drawback can be explained by the fact
that the maximum breadth of the resulting geo-
metric figure is always greater than the breadth (B)
of an actual egg, as the B value is measured as the
egg breadth at the point corresponding to the egg
half length. This drawback has been reviewed in
more detail in our previous work.5 In order, there-
fore, for the mathematical estimation of the egg
contours not to be limited by a particular sample
used for computational purposes, but to apply to
all egg shapes present in nature, further theoretical
considerations are essential. One such tested and
promising approach is Hügelschäffer’s model.20–22
The German engineer Fritz Hügelschäffer first

proposed an oviform curve shaped like an egg
by moving one of two concentric circles along
its x-axis, constructing an asymmetric ellipse,
as reviewed elsewhere.23–25 A theoretical mathe-
matical dependence for this curve was deduced
elsewhere,20,21 which was later adapted by us in
relation to the main measurements of the egg
(i.e., its length, L, and maximum breadth, B) and
carefully reviewed as applied to chicken eggs:5

y = ±B
2

√
L2 − 4x2

L2 + 8wx + 4w2 , (1)

where B is the egg maximum breadth, L is the egg
length, and w is the parameter that shows the dis-
tance between two vertical axes corresponding to
themaximumbreadth and the half length of the egg.
Obradović et al.22 demonstrated possible trans-

formations of the egg-shaped ovoid by introducing
some modifications to Hügelschäffer’s model. In

this regard, we consider the Hügelschäffer’s model
described by Eq. (1) as the standard one.
The standard Hügelschäffer’s model works very

well for three classical egg shapes, that is, circular,
elliptical, and oval (Fig. 2A–D). Indeed, when
L = B, the shape becomes a circle, and when w = 0,
it becomes an ellipse. Therefore, the majority of
egg shapes can be defined by the above formula
(Eq. 1). Unfortunately, Hügelschäffer’s model is not
applicable for estimating the contours of pyriform
eggs (Fig. 2E). For instance, it is obvious even from
visual inspection that the theoretical profile of the
Brünnich’s guillemot egg does not resemble its
actual real-world counterpart. Thus, Hügelschäf-
fer’s model has some limitations in the description
of eggs, and one of those is a limited range of possi-
ble variations of the w value.5 Use of other models
that mathematically describe the shape of a bird’s
egg is complicated by the fact that these equations
only allow the creation of geometric profiles that
resemble an egg. However, this would result in a
violation of the size of the described egg,5 which
is quite acceptable in architecture and fine arts but
absolutely unacceptable in biological research.
On the basis of analysis of various formulae

available to egg geometry researchers,14 one can
admit that the problem of amathematical definition
of pyriform (conical) eggs is the most difficult in
comparison with all other egg shapes. With this
in mind, the goal of this research was aimed at
developing a mathematical expression that would
be able to accurately describe pyriform eggs and at
devising a universal formula for eggs of any shape.

Methods

To verify if the standard Hügelschäffer’s model
(Eq. 1) previously applied by us to chicken eggs5
is valid for all the possible egg shapes of various
birds, we tested it on the following species: Ural
owl (Strix uralensis) as a representative of circular
eggs (Fig. 2A); emu (Dromaius novaehollandiae)
representing elliptical eggs (Fig. 2B); song thrush
(Turdus philomelos) and osprey (Pandion haliae-
tus) for oval eggs (Fig. 2C and D); and Brünnich’s
guillemot (Uria lomvia) for pyriform eggs (Fig. 2E).
In trying to establish if the novel formula of

the pyriform contours (Eq. 3) and the univer-
sal formula (Eq. 5) we developed here are valid
for describing a variety of pyriform shapes, we
applied them to the following species: Brünnich’s

3Ann. N.Y. Acad. Sci. 1 (2021) 1–9 © 2021 New York Academy of Sciences.
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Figure 2. The images of eggs of the four main shapes from the following species: (A) Ural owl (Strix uralensis), circular
(https://commons.wikimedia.org/wiki/File:Strix_uralensis_MWNH_0642.JPG). (B) Emu (Dromaius novaehollandiae), elliptical
(https://commons.wikimedia.org/wiki/File:Dromaius_novaehollandiae_MWNH_0009.JPG). (C) Song thrush (Turdus philome-
los), oval (https://commons.wikimedia.org/wiki/File:Turdus_philomelos_MWNH_2235.JPG). (D) Osprey (Pandion haliaetus),
oval (https://commons.wikimedia.org/wiki/File:Pandion_haliaetus_MWNH_0705.JPG). (E) Brünnich’s guillemot (Uria lomvia),
pyriform (https://commons.wikimedia.org/wiki/File:Uria_lomvia_MWNH_2182.JPG). The graphs on the right show the theo-
retical contours plotted using Hügelschäffer’s model (Eq. 1). All egg images were taken by Klaus Rassinger and Gerhard Cam-
merer, 2012, are distributed under the terms of a CC-BY-SA-3.0 license and available in Wikimedia Commons (category: Eggs
of the Natural History Collections of the MuseumWiesbaden), and their dimensions do not correspond to actual size because of
scaling.

4 Ann. N.Y. Acad. Sci. 1 (2021) 1–9 © 2021 New York Academy of Sciences.
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Figure 3. The images and corresponding theoretical profiles of pyriform eggs of different shape indices (SI) and w to L ratios.
(A) A Brünnich’s guillemot’s (Uria lomvia) egg (https://commons.wikimedia.org/wiki/File:Uria_lomvia_MWNH_2182.JPG),
SI = 0.58, w/L = 0.17. (B) A great snipe’s (Gallinago media) egg (https://commons.wikimedia.org/wiki/File:Gallinago_media_
MWNH_0193.JPG), SI= 0.69,w/L= 0.10. (C) A king penguin’s (Aptenodytes patagonicus) egg (https://commons.wikimedia.org/
wiki/File:Manchot_royal_MHNT.jpg), SI= 0.07, w/L= 1.8. The egg dimensions do not correspond to actual size because of scal-
ing. The egg images are available in Wikimedia Commons and distributed under the terms of a CC-BY-SA-3.0 license, and were
taken byKlaus Rassinger andGerhardCammerer, 2012 (A andB; category: Eggs of theNaturalHistoryCollections of theMuseum
Wiesbaden) and by Didier Descouens, 2011 (C; category: Bird eggs of the Muséum de Toulouse).

guillemot (Uria lomvia; Fig. 3A), great snipe
(Gallinago media; Fig. 3B), and king penguin
(Aptenodytes patagonicus; Fig. 3C).
For mathematical and standard statistical cal-

culations, Microsoft Excel and STATISTICA 5.5

(StatSoft, Inc./TIBCO, Palo Alto, CA) were used.
As a part of our broader research project to develop
more theoretical approaches for nondestructive
evaluation of various egg characteristics,2 we did
not handle eggs from wild birds or any valuable

5Ann. N.Y. Acad. Sci. 1 (2021) 1–9 © 2021 New York Academy of Sciences.
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Figure 4. The egg contours plotted using Eqs. (1) and (2) if (A) n = 2, (B) n = 1.3, (C) n = 1, (D) n = 0.8, (E) n = 0.5, and (F)
n = 0.3.

egg collection in this study. Where needed, we
substituted actual eggs with their images and math-
ematical representational counterparts. To make
it clear, we have considered a standard hen’s egg
as represented by Romanoff and Romanoff 7 and
used their data of numerous egg measurements
to deduce a formula for recalculation of w (see
Supplementary Material S1, online only).

Results

As a first step, we employed the data of numer-
ous egg measurements obtained by Romanoff and
Romanoff 7 for a standard hen’s egg, and produced
the following formula for the recalculation ofw (see
details in SupplementaryMaterial S1, online only):

w = L − B
2n

(2),

in which n is a positive number.
Inputting different numbers in Eq. (2) and sub-

stituting the value of w into Eq. (1), we can design
different geometrical curves that resemble the egg
contours of other species (Fig. 4A–C).
Thus, the principal limitation of the standard

Hügelschäffer’s model is the fact that n cannot

be less than 1, which means that the maximum
value of w is (L–B)/2. Otherwise, the obtained
contour does not resemble the shape of any egg
(Fig. 4D–F). This fact was investigated and well
explained elsewhere.22
Such limitations explain why the standard

Hügelschäffer’s model cannot be used to describe
the contours of pyriform eggs. The only way to
make the shape of the pointed end of such eggs
more conical is to use n values less than 1, but in
this case, the obtained contours do not resemble
any egg currently existing in nature. In a series
of mathematical computations, we deduced a for-
mula for the pyriform egg shape (see details in
Supplementary Material S2, online only):

y = ± B
2

×
√

(L2 − 4x2)L
2(L − 2w)x2 + (L2 + 8Lw − 4w2)x + 2Lw2 + L2w + L3

(3),

If we place both contours, the pyriform (Eq. 3)
and Hügelschäffer’s (Eq. 1) ones, together onto the
same diagram (Fig. 5), the presence of white area

6 Ann. N.Y. Acad. Sci. 1 (2021) 1–9 © 2021 New York Academy of Sciences.
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Figure 5. The contours of the egg plotted using the pyriform
model according to Eq. (3) (inner line) and Hügelschäffer’s
model according to Eq. (1) (outer line).

between them raises the peculiar question: what
to do with those eggs whose contours are tracing
within this zone?
If we choose any point on the x-axis within the

interval [–w…L/2] corresponding to the white
area between two models, there is obviously some
difference, �y, between the values of the functions
recalculated according to the standard Hügelschäf-
fer’s model, yH (Eq. 1), and the pyriform one, yc
(Eq. 3), that tells how conical the egg is:

�y = yH − yc (4).

The subscript index c was added only to des-
ignate that this function is related to its classic
pyriform (conic) profile according to Eq. (3) (yc
does not differ from y in Eq. 3). Maximum values
of �y mean that the egg contour is related to its
classic pyriform profile and can be expressed with
Eq. (3). When �y = 0, the egg shape has a classic
ovoid profile (the standard Hügelschäffer’s model)
and is defined mathematically with Eq. (1).
To fill this gap (�y) between the egg profiles

according to Eqs. (1) and (3), mathematical cal-
culations were carried out (see Supplementary
Material S3, online only), which resulted in the
final universal formula applicable for any egg:

y = ±B
2

√
L2 − 4x2

L2 + 8wx + 4w2 ×
(
1 −

√
5.5L2 + 11Lw + 4w2 × (

√
3BL − 2DL/4

√
L2 + 2wL + 4w2 )√

3BL(
√
5.5L2 + 11Lw + 4w2 − 2

√
L2 + 2wL + 4w2 )

×

⎛
⎝1 −

√
L(L2 + 8wx + 4w2 )

2(L − 2w)x2 + (L2 + 8Lw − 4w2 )x + 2Lw2 + L2w + L3

⎞
⎠
⎞
⎠

(5),

where DL/4 is egg diameter at the point of L/4 from
the pointed end (Fig. 5).
Both Eqs. (3) and (5) were tested using pyriform

eggs of different shape indices (SI) andw to L ratios,
and their validity was explicitly verified (Fig. 3).

Discussion

Historically, the egg has represented a traditional
food product and a natural object laid by birds
that has a remarkable and unique shape. The com-
mon perception of “egg-shaped” is an oval, with a
pointed end and a blunt end and the widest point
nearest the blunt end, somewhat like a chicken’s
egg. As we have demonstrated, however, things
can be far simpler (as in the case of the spherical
eggs seen in owls, tinamous, and bustards) or far
more complicated (as in the case of pyriform eggs,
e.g., seen in guillemots, waders, and the two largest
species of penguin). Evidence suggests26 that egg
shape is determined by the underlying membranes
before the shell forms. Why, in evolutionary terms,
does an egg have the shape that it does is surpris-
ingly understudied. That is, although there are
some previous investigations in the field of egg
shape evolution,27–30 we do not know how exactly
this process occurred. In this context, it is the pyri-
form eggs (the ones that we have incorporated in
this study in order to make the formula universal)
that have attracted the most attention. In common
sandpipers (and other waders), the pyriform shape
is an adaptive trait ensuring that the (invariably)
four eggs “fit together” in a nest (pointed ends
innermost) to ensure maximum incubation surface
against the mother’s brood patch.31 In guillemots,
the relative benefits of the pyriform shape to pre-
vent eggs rolling off cliff edges have been much
debated; however, to the best of our knowledge,
this is far from certain.1,32 The selective advantage
to being oviform rather than spherical is, according
to Birkhead,1 three-fold: First, given that a sphere
has the smallest surface area to volume ratio of any
geometric shape, there is a selective advantage to
being roughly spherical as any deviation could lead
to greater heat loss. Equally, nonspherical shapes
are warmed more quickly, and thus an egg may
represent compromise morphology for most birds.
A second consideration may well be, as in common
sandpipers, related to the packing of the eggs in the
brood, and the third could be related to the strength
of the shell. In this final case, the considerations are

7Ann. N.Y. Acad. Sci. 1 (2021) 1–9 © 2021 New York Academy of Sciences.
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that the egg needs to be strong enough so as not to
ruptured when sat on by the mother (a sphere is the
best bet here), but weak enough to allow the chick
to break out. As a compromise between the two, a
somewhat elongated shape (be it elliptical, oval, or
pyriform) may represent a selective advantage.
In this study, we observed that the applications

of a mathematical framework for the study of
oomorphology4 and egg shape geometry have
developed from more simple formulae to more
complex ones. In particular, the equation for the
sphere would come first, being, then, modified
into the equation for the ellipse by transforming
the circle diameter into two unequal dimensions.
The standard Hügelschäffer’s model represented a
mathematical approach to shift a vertical axis along
the horizontal one. Finally, the universal formula
(Eq. 5) we have provided here would allow the
consideration of all possible egg profiles, including
the pyriform ones. For this, we would need only to
measure the egg length L, the maximum breadth
B, the distance w between the two vertical lines
corresponding to the maximum breadth and the
half length of the egg, and the diameter DL/4 at the
point of L/4 from the pointed end.
While we have provided evidence that our for-

mula is universal for the overall shape of an egg, not
every last contour of an egg may fit into the strict
geometric framework of Eq. (5). This is because
natural objects are much more diverse and variable
than mathematical objects. Nevertheless, generally
speaking, we accept that the mountains are pyra-
midal and the sun is round, although, in reality,
their shapes only approximately resemble these
geometric figures. In this regard, a methodological
approach to assessing the shape of a particular
bird egg would be to search for possible differences
between the tested egg and its standard geomet-
ric shape (Eq. 5). These distinctive criteria can
(and should) be different for various purposes and
specific research tasks. Perhaps, this would be the
radius of the blunt and/or pointed end, or the skew-
ness of one of the sections of the oval, or something
else. The key message is that by introducing the
universal egg shape formula, we have expanded
the arsenal of mathematics with another geometric
figure that can safely be called a real-world egg.
The mathematical modeling of the egg shape and
other egg parameters that we have presented here
will be useful and important for further stimulating

relevant theoretical and applied research in the
fields of mathematics, engineering, and biology.2

Conclusion

Here, a universal mathematical formula for egg
shape has been proposed that is based on four
parameters: egg length, maximum breadth, shift of
the vertical axis, and the diameter at one quarter
of the egg length. This formula can theoretically
describe any bird’s egg that exists in nature. Math-
ematical descriptions of the sphere, ellipsoid, and
ovoid (all basic egg shapes) have already found
numerous applications in a variety of disciplines,
including food research, mechanical engineering,
agriculture, biosciences, architecture, and aero-
nautics. We propose that this new formula will,
similarly, have widespread application. We sug-
gest that biological evolutionary processes, such
as egg formation, are amenable to mathematical
description and may become the basis for research
in evolutionary biology.
In the course of the present analysis and search

for the optimal mathematical approximation of
oomorphology, we showed that our approach is
as accurate as possible for egg shape prediction.
On the basis of the results of exploring egg shape
geometry models, we postulate here for the first
time the theoretical formula that we have found is
a universal equation solution for determining egg
contours. Our findings can be applied in a variety
of fundamental and applied disciplines, including
food and poultry industry, and serve as an impetus
for further scientific investigations using eggs as a
research object.
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(4) Supplementary Material S1: Recalculation of w

Let’s consider a standard hen’s egg as represented by Romanoff & Romanoff1 using their data of

numerous egg measurements (Fig. S1).

Figure S1. A standard (or “ideal”) chicken egg.1

In this example, we selected the following five points on the egg image (Fig. S1): A) a midpoint of

the egg length, L/2; B) a point at the egg maximum breadth (B); C) the utmost distant point of the

blunt end of the egg; D) a point at a radius of an inner circle with the center in the O point, (where

O is a cross point of the egg maximum breadth and length) so that the distances OB and OD are

equal.

Then, we can state that AO = w, OB = OD = B/2, and

(EqnS1.1)

Taking into consideration that:

 and DC = 2.6 – 2.1 = 0.5,

1



it is possible to conclude that DC = 2w. Then, EqnS1.1 can be rewritten as:

(EqnS1.2)

For common usage of the Hügelschäffer’s formula, we could rewrite EqnS1.2 as:

(EqnS1.3)

in which n is a positive number.

Reference

1. Romanoff, A.L. & A.J. Romanoff. 1949. The Avian Egg. New York, NY, USA: John Wiley & Sons 

Inc.
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Supplementary Material S2: Mathematical description of pyriform eggs

By sequentially sorting out the classical functions of the curves, we determined that the image of 

the pointed end of the guillemot egg (Fig. 2E) shows that it is complied with contours of a square 

parabola. A parabola is a plane curve, which is mirror-symmetrical and is approximately U-

shaped and perfectly described the sharp end of pyriform eggs. If our assumption is correct, a 

blunt end of the pyriform egg will have a classic egg contour according to Hügelschäffer’s model. 

The pointed end however should have a form of a parabola whose vertex lays on the x-axis, and 

the lines are rested against the extreme points of the egg maximum breadth (Fig. S2-1).
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Figure S2-1. Graphic representation of the guillemot egg profile using a parabola (pink line) and

Hügelschäffer’s model (black line).

Thus, the objective of our study was the theoretical definition of the pyriform egg with 

mathematical terms and plotted using both the Hügelschäffer’s model and the parabola. Similar to

Petrović & Obradović,1 where principles of Newton’s hyperbolism were used and the function t(x)

3



(EqnS2.1)

was added into the equation of the ellipse, obtaining a formula for a classic egg contour (or the 

Hügelschäffer’s model):

(EqnS2.2)

we assumed to follow the same principle for a pyriform profile, so another function that we 

conditionally defined as p(x) and called a ‘pyriform function’ was used in the EqnS2.2 instead of 

t(x):

(EqnS2.3)

Wherefrom:

(EqnS2.4)

According to our assumption, a vertex of the parabola that corresponds to the pointed end of the 

classic egg contour (Hügelschäffer’s model) lays on the x-axis at x = L/2 and the lines are rested 

against the extreme points of the egg maximum breadth, B, which is shifted from the y-axis at the 

value of x = –w, while the blunt end has the form of Hügelschäffer’s model (Fig. S2-2).
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Figure S2-2. Geometry of the pyriform egg.

Taking into account that a vertex of a horizontal parabola is located on the x-axis, thus grounding 

upon theoretical principles for the following function as reviewed elsewhere2 and the data which 

follows from Fig. S2-2, when y = 0, x = L/2; and when x = –w, y = B/2, we obtained the functional 

dependence of the parabolic end of the pyriform egg contour:

(EqnS2.5)

Considering that the pyriform egg contour consists of two geometrical figures, the parabola and 

Hügelschäffer’s model, the values x and y of the pointed and blunt ends are different, so the 

subscript index ‘p’ would correspond to the meanings of x and y of the parabolic part, and the 

ones for the Hügelschäffer’s part would have the subscript index ‘H’. Thus, the interval for xp is [–

w, L/2] and the one for xH is [–L/2, –w].

5



Inputting EqnS2.5 into EqnS2.4 we inferred the pyriform function p(xp) for the parabolic part of the

egg:

(EqnS2.6)

Then, the pyriform function p(xH) for Hügelschäffer’s part of the egg is expressed accordingly from

EqnS2.1 thus:

(EqnS2.7)

To produce a universal formula for recalculating the pyriform multiplier p(x), we would need to 

unite the both equations for p(xp) and p(xH) into one. For this, each EqnS2.6 and EqnS2.7 were 

transformed as follows:

(EqnS2.8)

(EqnS2.9)

If we express the values of x in terms of the egg length L as x = aL, wherefrom a = x/L, then, for 

the parabolic part of the egg the values of ap would be within the interval ap = [–w/L; 1/2], and for 

the Hügelschäffer’s one within aH = [–1/2; –w/L] (Fig. S2-2), so EqnS2.8 and EqnS2.9 were 

rewritten as follows:

6



(EqnS2.10)

(EqnS2.11)

The united function p(x) should satisfy both EqnS2.10 and EqnS2.11 within the whole interval of a

= [–1/2; 1/2]. Prior to start an approximation procedure of such combination, we defined possible 

variations of the meanings of w/L. In accords with the Hügelschäffer’s model, w cannot be less 

than 0. In this case, the egg image just revolves for 180o over the x-axis and, thus, the minimum 

possible value for w is 0. When w = 0, the classic egg contour transforms into the ellipse.1 As 

above mentioned, the maximum possible meaning of w is (L–B)/2. Thus, the minimum possible 

value of w/L is 0, and the maximum one is:

(EqnS2.12)

where SI is the egg shape index (maximum breadth to length ratio). Then, the maximum value of 

w would be when the value of SI is minimal. We found that the mostly elongated eggs, i.e., with 

the least shape index (0.55 to 0.57), are inherent in the maleos (Macrocephalon maleo) and long-

tailed sylph (Aglaiocercus kingii).3,4 Nevertheless, the similar approach to describing oomorpholgy

can be used not only for avian species. For example, the eggs of American crocodiles and some 

dinosaurs5 have the shape index values close to 0.5, so we assumed this as a minimal value for 

SI. Then, as follows from EqnS2.12, wmax/L = 0.25, and performing the approximation procedure, 

we should deal with the interval of w/L = [0; 0.25], dividing it into five equal subintervals of the 

length 0.05 with the following subinterval endpoints: 0, 0.05, 0.1, 0.15, 0.2 and 0.25.

7



The meanings of p(xH) and p(xp) (EqnS2.10 and EqnS2.11) were recalculated by inputting the 

correspondent values of a for the Hügelschäffer’s part of the egg, aH = [–1/2; –w/L], and for the 

parabolic one, [–w/L; 1/2]. As a result, the diagram in Fig. S2-3 was plotted.
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Figure S2-3. The curves of p(x) as a function of a according to EqnS2.10 and EqnS2.11 for the values

of w/L ranged between 0 and 0.25.

The functions of p(x) in Fig. S2-3 are related to piecewise functions,6 so we can unite these into 

one using a numerical procedure.

At first, we intended to define an approximating function that would double the combination of the

obtained curves (Fig. S2-3) as accurate as possible. Taking into account that the curves consist

of two linear functions (EqnS2.10 and EqnS2.11), principles of linear algebra7 were used for this

approximation. The most accurate results were obtained using the following formula:

8



(EqnS2.13)

in which c1…c5 are constant coefficients to be defined.

The results of the approximation with EqnS2.13 are shown in Fig. S2-4.
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Figure S2-4. The approximated curves p(x) using EqnS2.13.

The obtained coefficients for each meaning of w/L are presented in Table S2-1 together with the

coefficient of determination (R2) between the results calculated using EqnS2.13 and EqnS2.10 or

EqnS2.11, respectively.

Table S2-1. Meanings of the coefficients c1…c5 in EqnS2.13.

w/L c1 c2 c3 c4 c5 R2

9



0 0.316 -0.320 1.493 0.297 -0.556 0.9962

0.05 0.517 0.024 1.415 0.461 -0.609 0.9979

0.10 0.851 0.814 1.548 0.711 -0.537 0.9988

0.15 1.447 2.484 2.286 1.124 -0.221 0.9994

0.20 2.617 6.128 4.612 1.886 0.635 0.9997

0.25 5.171 14.714 11.246 3.467 2.828 0.9999

To make EqnS2.13 valid for all meanings of w/L (Fig. S2-4), each coefficient c was defined as a

function c = f(w/L) and, then, approximated with relevant equations (Fig. S2-5).

c=f(w/L)

c 1 = 107.91(w /L )2 - 9.163w /L  + 0.4922

R 2 = 0.982

c 2 = 375.88(w/L) 2 - 39.598w/L + 0.3098

R 2 = 0.9764

c 3 = 302.37(w/L )2 - 41.826w/L + 2.0656

R 2 = 0.9563

c 4 = 65.224(w /L )2 - 4.5722w /L  + 0.401

R 2 = 0.9853

c 5 = 102.61(w /L )2 - 13.67(w /L ) - 0.3861

R 2 = 0.9685
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Figure S2-5. The approximation of the coefficients c1…c5 with square polynomials.

As a result, the final approximating formula was defined as follows:

(EqnS2.14)

10



Considering  EqnS2.3,  the  function  that  defines  the  contours  of  the  pyriform  eggs  can  be

represented as:

(EqnS2.15)

Judging from the appropriate graphic (Fig. S2-6) and further theoretical analysis of the obtained

equation EqnS2.15, it showed a considerable drawback: at the point of x = –w, y should be equal

to B/2.
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Figure S2-6. The contour of an actual guillemot egg plotted using EqnS2.15.

This principle was thoroughly described in our previous paper8. Apart from looking very similar to

the actual guillemot egg contour, the maximum value of y that is supposed to be equal to B/2 =

2.25 cm in our case, equals to 2.21 cm. This discrepancy would require a further detailed revisit

of EqnS2.15 as follows:
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if x = –w, ymax = B/2, and considering EqnS2.15, that is valid when

(EqnS2.16)

The obtained equation EqnS2.16  demonstrated a bias and was not true for the whole possible

interval of w/L meanings. Numerical methods in adjusting EqnS2.16 enabled us to stipulate that

the main error occurs when the results of the approximated calculations do not coincide with the

initial ones at three basic points p(–L/2), p(–w) and p(L/2), or when a = –1/2, a = –w and a = 1/2.

Thus, to circumvent this obstacle, we undertook another approach. For each meaning of  w/L

chosen previously, we determined the meanings at three basic points (Table S2-2), which were

recalculated from EqnS2.10 and EqnS2.11 accordingly.

Table S2-2. The meanings of a and p(x) at three basic points p(–L/2), p(–w) and p(L/2).

w/L a = –1/2 a = –w a = 1/2 p(–L/2) p(–w) p(L/2)

0 –0.5 0.00 0.5 1.00 1.00 2.00

0.05 –0.5 –0.05 0.5 0.81 0.99 2.20

0.10 –0.5 –0.1 0.5 0.64 0.96 2.40

0.15 –0.5 –0.15 0.5 0.49 0.91 2.60

0.20 –0.5 –0.2 0.5 0.36 0.84 2.80

0.25 –0.5 –0.25 0.5 0.25 0.75 3.00
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The results of the approximation of the data from Table S2-2 are given graphically in Fig. S2-7.

p 0 = 2a2 + a  + 1

R 2 ≈ 1

P 0.05 = 1.8a2 + 1.39a  + 1.055

R 2 ≈ 1

p 0.1 = 1.6a2 + 1.76a  + 1.12

R 2 ≈ 1

p 0.15 = 1.4a2 + 2.11a  + 1.195

R 2 ≈ 1

p 0.2 = 1.2a2 + 2.44a  + 1.28

R 2 ≈ 1

p 0.25 = a2 + 2.75a  + 1.375

R 2 ≈ 1

0.250

0.750

1.250

1.750

2.250

2.750

-0.5 -0.3 -0.1 0.1 0.3 0.5
a

p
(x

)

w/L=0 w/L=0.05 w/L=0.1 w/L=0.15 w/L=0.2 w/L=0.25

Figure S2-7. The results of the approximation of the data from Table S2-2.

All the curves showed very accurate results expressed with square polynomials. Similar to the

previous approximating approach, to make the results valid for all meanings of  w/L (Fig. S2-7),

each coefficient c was defined as a function c = f(w/L), where coefficients c1…c3 correspondingly

fit the following condition:

(EqnS2.17)

in which pw/L means the value of p(x) (EqnS2.10 and EqnS2.11) for the respective value of w/L.

The results of the coefficients approximations are shown graphically in Fig. S2-8.
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c =f (w /L )

c1=-4w /L+2

R 2 = 1

c 2=-4(w /L )2+8(w /L )+1

R 2 = 1

c 3=2(w /L )2 + w /L  + 1

R 2 = 1

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0 0.05 0.1 0.15 0.2 0.25

w /L

c

c1 c2 c3

Figure S2-8. The results of the approximation of the coefficients c1…c3 in the equations of Fig. S2-5.

Then, the penultimate approximating formula was defined as follows:

(EqnS2.18)

And finally, the function that should satisfy the geometrical description of the pyriform eggs can

be inferred after substituting EqnS2.18 into EqnS2.3 as follows:

(EqnS2.19)
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The undertaken test of substituting x = –w into EqnS2.19 demonstrated that the meaning of ymax =

±B/2, and EqnS2.19 fully satisfies the basic condition for the universal geometrical description of

avian eggs:

(EqnS2.20)

(EqnS2.21)

A graphical representation of EqnS2.21 (or Eqn3) for the images of typical representatives of the 

pyriform eggs of different variations in the values of their shape index and w/L ratio also showed 

its validity (Fig. 3).
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Supplementary Material S3: Inferring a universal formula for an avian egg

For enabling us to express the contours between these two classic models, the pyriform one

(EqnS2.21,  or  Eqn3)  and the ovoid  one (Eqn1),  we assumed that  the pyriform function  p(x)

(EqnS2.20) can be represented as a product of the Hügelschäffer’s function, t(x), (EqnS2.1) and

some multiplier, Mp, that we coined as a pyriform multiplier:

(EqnS3.1)

Then, as follows from (EqnS2.3)

(EqnS3.2)

the formula for the conic shapes can be expressed accounting EqnS3.1 as follows:

(EqnS3.3)

wherefrom considering (Eqn4):

(EqnS3.4)

As follows from EqnS2.20 and EqnS2.1, the pyriform multiplier is defined as follows:
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(EqnS3.5)

Then, considering EqnS3.4:

(EqnS3.6)

As follows from Eqn4 and EqnS3.6, the classic pyriform (conic) shape can be expressed with the

following equation:

(EqnS3.7)

If to substitute the formula for yH (Eqn1), as expected EqnS3.7 is identical to EqnS2.21 (or Eqn3).

If an egg profile is located just between Hügelschäffer’s and pyriform curves, we would need in

this case to take only a respective part of Δy, which can be defined as some coefficient k. Then, if

we express a mathematical function of such eggs as yH/c:

(EqnS3.8)

or

(EqnS3.9)
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The meanings of k are within the interval [0…1]. When k = 0, the egg shape is expressed with the

Hügelschäffer’s  model.  If  k =  1,  then,  it  appears  to  be  of  classic  pyriform  (conic)  one,  so

(EqnS3.9) can be considered as the universal formula for any avian egg.

Independent validation of the universal formula

To check if (EqnS3.9) is valid, let us assume that k = 0.5. The graphic representations of the egg

contours (Fig. S3) with  k = 0, 0.5 and 1 suggested that (EqnS3.9) can be used for practical

calculations of these egg profiles.

-2.50

-1.50

-0.50

0.50

1.50

2.50

-4 -3 -2 -1 0 1 2 3 4

Figure S3. The egg contours according to (EqnS3.9) with k = 0 (red); k = 0.5 (green) and k = 1 (black).
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An additional question that required further resolution was how to determine the value of k for any

tested egg. For this purpose, we considered a characteristic point at x = L/4 (Fig. 4D–F) that can

be  measured  directly.  As  found  in  our  previous  study,1 this  point  was  one  of  the  mostly

informative in predicting the parameter w in Hügelschäffer’s formula. Then, inputting x = L/4 into

Hügelschäffer’s  model (Eqn1) and the pyriform formula (EqnS2.21,  or Eqn3),  we derived the

meaning of yL/4 at this point respectively for both models:

(EqnS3.10)

(EqnS3.11)

Consequently, the difference between EqnS3.10 and EqnS3.11 leads to the meaning of ΔyL/4 at

the point of x = L/4:

(EqnS3.12)

The value  of an actual egg can be recalculated from direct measurements of the egg

diameter, ,  at  the  point  of  L/4  using  a  caliper  as  proposed,  for  example,  elsewhere,2

machine vision1,3 or any other proper technique. Taking into consideration that:

, (EqnS3.13)

(EqnS3.14)
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in which is the difference of the y values at the point of x = L/4 of Hügelschäffer’s model

and an actual egg. Then, the value of the coefficient  k can be determined using a division of

EqnS3.14 and EqnS3.12:

(EqnS3.15)

Finally, inputting EqnS3.15 into EqnS3.9, we can state that we have obtained the universal model

applicable for any avian egg as follows:

(EqnS3.16)

or expressing yH with Eqn1

(EqnS3.17)
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