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Researchers have developed a new model to describe how biological or

technical systems form complex structures without external guidance.

FULL STORY

LMU researchers have developed a new model to describe how

biological or technical systems form complex structures without

external guidance.

Amoebae are single-cell organisms. By means of self-organization, they can form

complex structures -- and do this purely through local interactions: If they have a lot of

food, they disperse evenly through a culture medium. But if food becomes scarce, they

emit the messenger known as cyclic adenosine monophosphate (cAMP). This chemical

signal induces amoebae to gather in one place and form a multicellular aggregation. The

result is a fruiting body.

"The phenomenon is well known," says Prof. Erwin Frey from LMU's Faculty of Physics.

"Before now, however, no research group has investigated how information processing, at

a general level, affects the aggregation of systems of agents when individual agents -- in

our case, amoebae -- are self-propelled." More knowledge about these mechanisms

would also be interesting, adds Frey, as regards translating them to artificial technical

systems.

Together with other researchers, Frey describes in Nature Communications how active

systems that process information in their environment can be used -- for technological or

biological applications. It is not about understanding all details of the communication

between individual agents, but about the specific structures formed through self-

organization. This applies to amoebae -- and also to certain kinds of robots. The research

was undertaken in collaboration with Prof. Igor Aronson during his stay at LMU as a

Humboldt Research Award winner.

https://www.sciencedaily.com/
https://www.sciencedaily.com/
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From biological mechanism to technological application

Background: The term "active matter" refers to biological or technical systems from which

larger structures are formed by means of self-organization. Such processes are based

upon exclusively local interactions between identical, self-propelled units, such as

amoebae or indeed robots.

Inspired by biological systems, Frey and his co-authors propose a new model in which

self-propelled agents communicate with each other. These agents recognize chemical,

biological, or physical signals at a local level and make individual decisions using their

internal machinery that result in collective self-organization. This orientation gives rise to

larger structures, which can span multiple length scales.

The new paradigm of communicating active matter forms the basis of the study. Local

decisions in response to a signal and the transmission of information, lead to collectively

controlled self-organization.

Frey sees a possible application of the new model in soft robots -- which is to say, robots

that are made of soft materials. Such robots are suitable, for example, for performing

tasks in human bodies. They can communicate with other soft robots via electromagnetic

waves for purposes such as administering drugs at specific sites in the body. The new

model can help nanotechnologists design such robot systems by describing the collective

properties of robot swarms.

"It's sufficient to roughly understand how individual agents communicate with each other;

self-organization takes care of the rest," says Frey. "This is a paradigm shift specifically in

robotics, where researchers are attempting to do precisely the opposite -- they want to

obtain extremely high levels of control." But that does not always succeed. "Our proposal,

by contrast, is to exploit the capacity for self-organization."
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Multi-scale organization in communicating
active matter

Alexander Ziepke 1, Ivan Maryshev1, Igor S. Aranson 2 & Erwin Frey 1,3

The emergence of collective motion among interacting, self-propelled agents
is a central paradigm in non-equilibrium physics. Examples of such active
matter range from swimming bacteria and cytoskeletal motility assays to
synthetic self-propelled colloids and swarming microrobots. Remarkably, the
aggregation capabilities of many of these systems rely on a theme as funda-
mental as it is ubiquitous in nature: communication. Despite its eminent
importance, the role of communication in the collective organization of active
systems is not yet fully understood. Here we report on the multi-scale self-
organization of interacting self-propelled agents that locally process infor-
mation transmitted by chemical signals. We show that this communication
capacity dramatically expands their ability to form complex structures,
allowing them to self-organize through a series of collective dynamical states
at multiple hierarchical levels. Our findings provide insights into the role of
self-sustained signal processing for self-organization in biological systems and
open routes to applications using chemically driven colloids or microrobots.

Active matter encompasses a broad class of non-equilibrium systems
that transduce energy stored in the environment into mechanical
motion. In its most common form, locally interacting, self-propelled
agents form coherent collective states that exceed the size of a single
agent by orders of magnitude. Examples range from a variety of bio-
logical systems such as swimming bacteria1–3, cytoskeletal motility
assays4–6, swarms, and flocks and schools of larger animals7, to syn-
thetic self-propelled colloids8,9 and swarmingmicrorobots10,11. There is
broad agreement that self-propulsion, local alignment, and random
disorientation of simple agents are fundamental microscopic deter-
minants that can explain the occurrence of large-scale collective
behavior.

However, in addition to local short-range interactions, such as
alignment and collisions, many biological and synthetic systems
exhibit various types of long-range signaling strategies. The social
amoeba Dictyostelium discoideum uses cell-to-cell cyclic adenosine
monophosphate (cAMP) concentration waves and chemotaxis to
induceaggregation under harsh conditions12,13, insects rely on sound to
coordinate the formation of cohesive swarms14, protein waves control
cargo transport15, some active colloids form oscillating clusters using

long-range chemical Ag/AgCl coupling16,17, microrobots and robotic
fish use infrared, electrical and acoustic signals to communicate18,19.
Signal transduction allows organisms to develop successful survival
techniques that give them an evolutionary advantage over non-
communicating organisms20,21. Communication facilitates the emer-
gence of novel dynamic steady states, such as large streams and
localized vortices13. Without communication, such states are not gen-
eric and are observed only under specific boundary conditions, parti-
cle chirality, or density-dependent feedback mechanisms22,23. Despite
its importance, the role of communication in the context of active
matter remains largely unexplored.

A significant body of literature focuses on self-propelled particles
with diffusive (chemotactic) interactions. Studies on chemotactic
colloids report on the formation of localized clusters and colliding
polar bands, both established through motility-induced phase-
separation (MIPS)24–26. There, the chemical interactions between dif-
ferent agents are mostly linear and passive, e.g., with a constant
emission of the signal by the individual agents27,28. Distinct from these
earlier studies, we ask about the role of an active, non-trivial agent’s
response (decision-making) to detected signals. The information
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processing and decision-making should enable the complex hier-
archical organization akin to living matter that does not occur in sys-
tems with passive chemical signaling.

To reveal the fundamental role of interparticle communica-
tion for self-organization, we chose to study a system of self-
propelled units (agents) with local polar-alignment interactions.
In addition, each agent can perform a specific task, namely, to
detect and relay a signal transmitted between agents. Inspired by
social amoebae that use cyclic adenosine monophosphate (cAMP)
for communication29, and Gram-negative bacteria that employ
acyl-homoserine-lactone (AHL) molecules as quorum-sensing
signals30,31, we consider agents that broadcast a signal in the
form of a chemical substance into the environment, where it
spreads diffusively. Once the local level of the signal exceeds a
certain threshold, agents tend to produce and propagate it. Thus,
the agents act like a Schmitt trigger, a simple nonlinear electronic
circuit with hysteresis32. Such a signal transduction system con-
stitutes a spatially extended excitable medium that generically
exhibits spiral waves of signaling activity. These waves can con-
trol the spatial self-organization of the agents by entraining their
direction of self-propulsion. Thus, unlike existing models of
amoeboid or bacterial aggregation33–37, self-propelled motion,
rather than Brownian motion, is the primary mode of transport in
our system. In contrast to Vicsek-type models38, the model
incorporates the ubiquitous signaling found in biological sys-
tems. It thus provides insight into specific behaviors such as

aggregation in social amoebae39 and oscillatory colloids16 and
sheds light on the fundamental properties of active matter con-
sisting of agents with “on-board” signal processing capabilities.
The combination of chemical communication and internal infor-
mation processing leads to an aggregation process involving
collective dynamic states at multiple scales. We identify the
decision-making machinery of the individual active agents as the
driving mechanism for the collectively controlled self-
organization of the system.

Results
Model
We consider an agent-based description of communicating active
matter, in which each agent moves with velocity v= v0 n and is
endowed with signal detection and relaying capability whose activity
depends on an internal state variable s. The dynamics of the agents’
positions ri = (xi,yi)

T is described by

dri
dt

= v0 ni +
X

j rij<2rp½ �
f ij ð1Þ

where ni = cosφi,sinφi

� �T is the unit vector in the direction of the i-th
agent’s orientationφi, with i = 1,…,N;N is the total number of agents in
the domain. While the speed v0 of each particle is assumed to be
constant, their direction of motion n can change—owing to inelastic
binary collisions that favor polar alignment (Fig. 1a) or in response to a

Fig. 1 | Schematics of the agent-basedmodel for communicating active matter
and summary of collective dynamic states. a Polar self-propelled particles
undergo alignment in binary collisions. b A diffusible signal (green) aligns the cells’
orientation vectors. c Schematic of a Schmitt trigger with variable threshold cth.
d Temporal response c(t) of the agents’ signaling system with characteristic time-
scale τ. e–n Representative collective dynamic states in the agent-based (e–i) and
the hydrodynamic model (j–n). The snapshots illustrate aggregation and vortex
formation following initial ring formation (e, j), where remnant spiral wave arms
induce chemical wave propagation in the ring after the spiral core vanished due to

depletion in its center (‘whispering gallery’-modes); active droplets (f, k), with a
collective response to external stimuli; a collective stream (g, l), where agents
propagate toward the source of communication waves; a large vortex with a spiral
wave (h, m), and a polar band (i, n). White scale bars indicate a length of 10 units.
Colors indicate the polar orientation of particles (top panels) and the chemical
concentration c (bottompanels).White and yellow arrows illustrate the direction of
motion of the particles (top panels) and the propagation direction of signaling
activity (bottom panels), respectively. Parameters are defined in Supplemen-
tary Note 3.
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chemical signal (Fig. 1b).Within an interaction radius rc, agents align in
a polar fashion, i.e., the interaction of an agent with a neighbor causes
both agents to turn toward the average orientation angle with the
alignment rate Γ . If agents approach each other below a critical dis-
tance 2rp, they obey a hard-core repulsion interaction cast as an
isotropic short-range force f ij between the agents in Eq. (1). Akin to
chemotaxis, the agents align with a certain sensitivity ω along the
concentration gradient φc = tan

�1
�
∂yc=∂xc

�
of the local maximum of

the chemical signal concentration c. These competing alignment
processes are generally error-prone, which is accounted for by awhite-
noise term ξ i with amplitude

ffiffiffiffiffiffiffiffiffi
2DR

p
. Specifically, we assume that the

dynamics of the agent’s orientation φi over time t is given by the
Langevin equation

dφi

dt
= � Γ

X
j½rij<rc �

sinðφi � φjÞ
∣ri � rj ∣

+ω sinðφc � φiÞ+ ξ i, ð2Þ

incorporating binary inelastic collisions between neighboring
agents with spatial distance rij = ∣ri � rj ∣, chemotactic reorienta-
tion of agents along the concentration gradient of chemical sig-
naling molecules40, and noise, respectively. The orientation along
chemical gradients is implemented similarly to the agents’ polar
alignment with their neighbors. For instance, in social amoeba the
ability of chemotaxis is stable over large ranges of concentrations
and alignment can be assumed to be independent of the absolute
signal strength41.

Signal detection and self-sustained relaying are modeled by a
Schmitt trigger (Fig. 1c): if the signal amplitude (i.e., chemical con-
centration) is above some threshold value (c>cth), an agent in a
quiescent state (s0 =0) switches into an excited state (sex>0), and over
a period τ it broadcasts the signal (Fig. 1d), i.e., releases a certain
amount of the chemical into the environment, where it diffuses (with
diffusion constant Dc) and is also degraded with rate α. This yields the
chemical signal dynamics

∂tcðr, tÞ=DcΔc� αc+ β
XN
i = 1

f ∣r� ri∣
� �

ϕ si,c
� �

, ð3Þ

with a Gaussian spatial source distribution f(|r|), Laplace operator Δ,
and temporal derivative ∂t . The agents act as sources of the chemical
signal as

βϕ si,c
� �

=β 1� si
� �

Θ c� cth
� �

, ð4Þ

with Heaviside-type signal detection and production rate β. The
threshold value cth as well as the source strength depend on the
internal state, whosedynamics, for simplicity, is assumed to be linearly
adapting to the signal concentrations,

dsi
dt

= ϵ c� si
� �

: ð5Þ

The response of the agents’ state si to recent stimuli mimics
adaptation of receptor sensitivity and productiveness of the signal-
emission. Taken together, the model incorporates the fundamental
ingredients of a system of self-propelled active matter capable of
communication; see “Methods” for amore extensive description of the
agent-based model. Exemplary aggregation dynamics of a system
without active decision-making are studied in the Supplemen-
tary Note 2.

As a complementary approach based on this microscopic model,
we derive a hydrodynamic theory formulated in terms of the agents’
density field ρ r,tð Þ, the polarization field p r,tð Þ, the internal state vari-
able s r,tð Þ, and the concentration of the chemical signal c r,tð Þ, all of

which depend on the spatial position r and time t,

∂tρ r,tð Þ= � v0∇ � p+DρΔρ, ð6Þ

∂tp r, tð Þ= σ ρ� 1ð Þp� δ∣p∣2p+DpΔp� χp � ∇p� Q ρð Þ∇ρ+ρω∇c,
ð7Þ

∂tc r, tð Þ=DcΔc� αc+ρβΘðc� cthÞ 1� sð Þ, ð8Þ

∂ts r, tð Þ=DρΔs + ϵ c� sð Þ � �vp � ∇s: ð9Þ

The hydrodynamic model comprises a coupled set of partial dif-
ferential equations for these fields with basically the same parameters
as the agent-based model (see “Methods” for details and Supplemen-
tary Note 1 for a derivation of the hydrodynamic theory from the
agent-basedmodel). In the absence of communication, e.g., c � 0, the
parameters σ and δ regulate the emergence of polar order above a
mean-field critical density ρc = 1 when polar alignment interactions
outweigh angular diffusion. Based on the large-scale field equations,
we can study the dynamics of communicating activematter on length-
and time-scales, not accessible with agent-based numerical simula-
tions due to their high computational costs.

Collective dynamic states
Communicating active matter exhibits unprecedentedly rich spatio-
temporal dynamics and collective states, both during aggregation and
in the final non-equilibrium steady state. The agent-based model and
the hydrodynamic theory show that the emergence of order occurs
through the hierarchical formation of distinct collective dynamic
states (Supplementary Movie 1). These states include directed particle
streams in which the agents move toward the source of chemical
waves, ring-like streams with agents migrating along closed paths,
compactmotile droplets (active droplets), and large vortices that serve
as sources of chemical spiralwaves (Fig. 1e–n). The juxtaposition of the
spatial organization of the particles (Fig. 1e–n, top panels) and the
concentration field of the chemical signal (Fig. 1e–n, bottom panels)
reveals a tight interdependence between the collective states of active
matter and the chemical patterns.

Each of the collective dynamic states has a specific dynamics and a
degree of stability. Vortices are well-localized and are stabilized by
spiral waves trapped inside these dense aggregates. Their polarization
vector p is oriented perpendicular to the outer vortex boundary and
points inward, preventing agents from escaping and, therefore, sta-
bilizing the vortex (Fig. 1h, m). While vortices are stable and robust,
ring-like particle streams (Fig. 1e, j), retained by “whispering-gallery”
waves, are long-lived but metastable and are typically engulfed by
neighboring vortices (SupplementaryMovie 9). Active droplets (Fig. 1f,
k) lack an intrinsic source of excitable waves, and their direction of
migration is generally determined by external signal gradients. They
dissolve in the absence of guiding stimuli. A particle stream (Fig. 1g, l)
can be considered a limiting case of a ring-like stream (with an infinite
radius of curvature and planar signaling waves). It establishes an effi-
cient collective long-distanceparticle transfer toward the sourceof the
signaling waves. Finally, we also observe bands resembling the polar
bands that develop in non-communicating Vicsek-like models5 (Fig. 1i,
n). However, if agents in polar bands are coupled to chemical signaling
waves propagating along the bands, as shown in Fig. 1i, n, this will
induce a change of the agents’ orientation andmay lead to a transition
toward stream-type solutions as depicted in Fig. 1g, l.

Given these phenomenological observations, we ask two funda-
mental questions: How can different collective dynamic steady states
be selected by tuning characteristic properties of the particle
dynamics and the communication process? How can one characterize
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the hierarchical self-organization process andquantify the information
processing involved?

Figure 2 shows the (qualitative) phase diagram with the repre-
sentative collective dynamic states as a function of the agents’
mobility and signal sensitivity. In contrast to the isotropic-polar
transition in Vicsek-type systems at ρ= 142, order here emerges at
much lower densities, depending on the signal sensitivity (Supple-
mentary Figure 1). This is due to the alignment of the polar particles
with the collectively established signaling field. At a given particle
density, the dominant collective dynamic state in the asymptotic
non-equilibrium steady state is determined by the relative fraction of
motility and signaling effects. Vortices and rings are the dominant
structures in a parameter regime with lowmotility and high signaling
sensitivity. Thereby, vortices exhibit a balance between the persis-
tent self-propulsion promoting agents away from the localized vor-
tices and chemotactic attraction toward the vortex’ center due to
persistent spiral wave activity in the signaling field. If self-propulsion
outweighs the attractive force established by collective signaling,
vortices split up, and ring-like states become the predominant solu-
tion. If self-propulsion is rather weak and dominated by diffusion

effects, the steady-state is governed by active droplets. Conversely,
for vanishing signal sensitivity, the model reduces to a Vicsek-type
model38, and only polar bands are found. These can either host per-
sistent signaling activity or remain in the quiescent state of the sig-
naling machinery, just like system-spanning polar bands in Vicsek-
like models.

Next, we asked how the hierarchical aggregation process from a
disordered arrangement of particles to the final non-equilibrium
steady state can be understood based on our characterization of the
various collective dynamic states (Fig. 1). To this end, we focus on a
parameter regime with intermediate polarity relaxation times and a
balance between motility and signaling effects, which ultimately gives
rise to vortex states.

Hierarchical self-organization
Our agent-based simulations and numerical integration of the
hydrodynamic theory consistently show that the hierarchical self-
organization process is facilitated by an intricate interplay of self-
propulsion, signaling, and information processing (Fig. 3, Supple-
mentary Movie 8). Initially, small-scale density fluctuations form, out
of which droplets, streams, and small clusters later emerge. These
initial aggregation processes are facilitated by short distance sig-
naling waves and a local mutual entrainment. At later stages, the
aggregation is orchestrated by spiral waves of signaling activity.
Interestingly, there is competition between the spiral waves: Those
that occupy larger and denser areas (mounds) accordingly have a
higher frequency and displace smaller spiral waves (Supplementary
Figure 2). As a result, higher particle density provides a positive
feedback mechanism that favors the formation of larger aggregation
centers43. The aggregation stage is characterized by competition
between particle clusters, which is quite different from that of non-
signaling active matter [e.g., motility-induced phase separation
(MIPS)], where the number of clusters scales asNc ∼ t�η with η≈2=344.
In our hydrodynamic model, we observe multi-scaling behavior,
indicating qualitatively distinct types of processes (Fig. 3a, b) for the
time evolution of the cluster number and the density and polariza-
tion fields. Initially, we observe Nc ∼ 1=t (Fig. 3a), consistent with
interface-controlled Ostwald ripening of clusters45. Once the streams
have formed, there is a qualitative change in the aggregation process.
The aggregation rate is now limitedby thepersistent directedmotion
of clusters and streams which migrate toward the aggregation cen-
ters. This leads to a much faster decay of the cluster number, even
compared to the ballistic coalescence of clusters which would cor-
respond to η=2. This ‘streaming phase’ is followed by the formation
of a few localized vortices that contain most agents. Due to the low
particle density in between the vortices and the resulting lack of
signal transmission, the interaction between these structures is
strongly attenuated, and the coarsening process is slow. Since the
signaling field decays exponentially (with diffusion length
Lc ∼

ffiffiffiffiffiffiffiffiffiffiffi
Dc=α

p
), one expects a logarithmic coarsening law Nc ∼ 1=lnt46,

consistent with the slow decay seen in our numerical data (Fig. 3c).
Thus, the ability to process information and make decisions

results in the radically different organization of polar active matter.
Ordering begins below the threshold of the polar-isotropic transition.
The process leading to the formation of large vortices as robust
attractors in the final stage of aggregation is much faster than that
observed in non-signaling active matter or active matter with passive
chemical signaling24. This is because it can exploit multi-scale collec-
tive intermediate states, whose respective frequencies are quantified
in Fig. 3c. This classification confirms the observed phenomenology.
The initial phase is dominated by coarsening of droplets. Once orga-
nizing vortices emerge, they establish persistent signaling waves. This
causes a rapid decrease in the number of droplets and induces pro-
gressive aggregation through the formation of streams toward the
vortices. In the final phase, a slow coarsening process occurs among

Fig. 2 | Principal collective dynamic states in the hydrodynamic model. The
phase diagram of dominant (meta-stable) dynamic states in the ω� v0 (signal
susceptibility and motility) parameter space is shown in the lower panel g, and
snapshots of corresponding numerical simulations of the hydrodynamic model,
starting from a homogeneous initial density ρ0 = 0.6 and random initial excitations
of the signaling system are depicted in the upper panels. Colors indicate the polar
orientation within the aggregates. a Active droplets (three are highlighted by white
circles), b vortex states, c ring solutions, d “silent” polar bands, e streams, f polar
bands with signaling activity. See Supplementary Movies 2–7. The polar relaxation
rate is set to σ = 0.02, remaining parameters are given in Supplementary Note 3.
White bars indicate a length of 50 units.
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the vortices with a corresponding logarithmic decrease in their
number.

Information processing drives self-organization
Since eachagent is endowedwith a decision-making capability, we also
sought to characterize the course of information processing during
the multi-scale hierarchical aggregation process. To this end, we
quantified the time evolution of the information content I tð Þ in the
system, using the computable information content of a lossless com-
pressed configuration of the physical fields c, ρ, p, and s47,48. In parti-
cular, we consider the file sizes obtained by the Lempel-Ziv-Welch
compression algorithm49 as implemented in the PNG file format (see
“Methods”). The system’s information content changes over time as
individual agents process information in response to external stimuli
employing their self-propulsion and intrinsic signal processing cap-
ability (Schmitt triggers). In the absence of signaling, self-propulsion
and local interactions are unable to create order at subcritical densities
due to dominant angular diffusion; accordingly, the information con-
tent will decline exponentially with some decay rate λ as the system
approaches the disordered homogeneous state. Here, however, there
is information processing which leads to self-organization and induces
order. We quantify the information processing by the rate R of agents
transitioning to the refractory state, i.e., agents that emit a signal in
response to a stimulus and therefore process information (Fig. 3d).

Altogether, we expect the system’s information content to follow the
dynamics

dI
dt

∼R� λI, ð10Þ

with a fitting parameter λ. That, in turn, implies that the temporal
change in the stored information depends exclusively on the initial
information content and the measured processing rate R:

The basic hypothesis, Eq. (10), is validated by our numerical
simulations (Fig. 3e). On a qualitative level, it agrees very well with the
predicted evolution of information content. In particular, the predic-
tion captures not only the overall trend but also coincides with
important landmark points of the evolution. This affirms our assertion
that the signaling machinery is key for information processing and the
driving mechanism behind self-organization in the system.

The rate of change of the encoded information approaches a final
state in which the order generated by persistent signaling offsets the
loss of correlation created by the agents’ self-propulsion.

An analysis of the amount of information stored in the various
fields also reveals the different stages of the aggregation process
(Fig. 3f). We observe that the amount of information stored in the
density field decreases and eventually approaches a comparably low
value once themass has accumulated in only a few stable vortices. This
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Fig. 3 | Hierarchical self-organization and information processing. a Time
dependenceof the cluster numberNc for different values of themobility parameter
v0 in rescaled quantities t � v0 and Nc=

ffiffiffi
v

p
0. The unlabeled black line indicates the

estimate Nc ∼ ðN0 � κt2Þ=t. b Simulation snapshots at time t, displaying droplet
ripening, vortex-controlled aggregation, and merging of vortices. The scale bar
indicates a length of 100 units. Colors indicate polar orientation (top panels) and
signaling concentration (bottom panels), respectively. c Time-resolved classifica-
tion of collective dynamic states averaged over six simulation runs; the lighter
shades define intervals of standard deviations. Initially, droplets grow and

aggregate to form streams and vortices. d Time evolution of the information
processing rate R of the signaling system and standard deviations (gray) averaged
over six simulation runs. e Comparison of the rate of change dI=dt of the stored
information as predicted from Eq. (10) (blue) and the temporal derivative of
compressed file sizes (orange). f Time dependence of the information content of
the various fields, Eqs. (6)–(9). Parameters are ω = 0.05 and the values given in
Supplementary Note 3. Panels b–f show simulation results and analysis for v0 =0:5.
See “Methods” for details.
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reflects the results of the cluster number analysis (Fig. 3a), including
the qualitative change in aggregation dynamics between the dom-
inance of ripening and the dominance of the guided movement of
active droplets. In contrast to the homogeneous density field, the
information content of the polarity field saturates at higher values,
which correlates with the presence of persistent vortex states. Inter-
estingly, the information content of the chemical concentration field c
exhibits a super-exponential decay. This confirms that information
processing is mainly performed by the signaling machinery, which
makes it an essential factor in the organization of the aggregation
process. Moreover, it approaches its baseline information level earlier
than the density field, indicating the transition toward the phase of
nearly isolated vortex states.

Discussion
In conclusion, we have introduced a new class of active matter
equipped with self-sustaining signaling capabilities: it allows self-
propelled agents to communicate and process information. Commu-
nication and decision-making enable hierarchical self-organized
aggregation to emerge via a sequence of distinct collective dynamic
states.

While ourmodel is generic and does not rely on specific biological
or chemical details, the observed phenomenology closely resembles
the aggregation dynamics of social amoebae, including the formation
of stable vortices13 and metastable rings50. Communication induces a
non-trivial self-organized attraction that gives rise to the formationof a
rich variety of collective dynamic states. The exhibited behavior in
terms of collective dynamic states and the collectively controlled
aggregation process is a clear advance compared to current models of
chemotactic colloids. Besides the variety of observed states, commu-
nication and active information processing introduce a new frame-
work of collective organization. It allows for much faster aggregation
times and a controlled competition between aggregation centers as
high-density clusters can enlarge their basin of attraction.

There are several potential extensions to the model, such as
locally coupled self-propelled relaxation oscillators, signaling nematic
active matter, or self-propelled agents coupled via sound or electro-
magnetic waves, which may have direct relevance to technological
applications such as self-organizing swarms of minimal drones or
functional microrobots. Information processing could be introduced
by modifying the chemistry of colloids and droplets, thus allowing
experimentally accessible realizations to be directly established for
silver-chloride Janus colloids exhibiting chemical oscillations and
synchronization16,17, and for self-propelled emulsions hosting the
Belousov-Zhabotinsky reaction51, to name but two. Decision-making
can also be implemented using simple electronic circuits in mass-
manufactured microrobots. These may open new avenues for appli-
cations of active matter in nanoscience and robotics.

Methods
A detailed description of the agent-based model
In the agent-based model, we consider self-propelled particles with
radius rp in a two-dimensional squareperiodic domainwith side length
L. The particles move with constant speed v0 in the plane. The
dynamics of the agents’ positions ri is described by Eq. (1). The direc-
tion of movement can be changed by polar alignment during collision
events, chemotactic responses to signaling molecules, or stochastic
fluctuations. If two agents comewithin a distance of less than 2rp, they
are repositioned according to the following hard-core repulsion rule:
overlapping particles are shifted in the direction of their distance
vector by equal amounts until a distance of 2rp is restored. Within an
interaction radius rc>2rp, agents align in a polar fashion, i.e., the
interaction of an agent i with a neighbor j causes both agents to turn
toward the average orientation angle with the alignment rate Γ . The
agents also align with the direction φc = tan

�1 ∂yc=∂xc
� �

of the local

maximum of the chemical signal concentration c with the suscept-
ibility coefficient ω. Both alignment interactions are imperfect, which
we account for by adding zero-mean white noise ξ i with amplitudeffiffiffiffiffiffiffiffiffi
2DR

p
: ξ i tð Þξ j t0ð Þ
D E

=2DRδijδ t � t0ð Þ. In total, the dynamics of the
agent’s orientation φi is given by the Langevin equation, Eq. (2).

The system of agents establishes self-sustaining chemical signal-
ing as ameans of information processing and transmission. Each agent
is equipped with an internal state variable si 2 0,1½ � that determines
whether or not it perceives the environment and transmits signals by
emitting a chemical substance. We take the magnitude of si to be the
refractoriness of an agent to external signals, i.e., a measure of how
responsive it is to relay a signal: si =0 then corresponds to the state
with the lowest refractoriness (highest susceptibility). The agents are
assumed to sense the environment by linearly adapting to the local
concentration level cof the chemical fieldwith rate ϵ, Eq. (3), and act as
nonlinear sources of the chemical signal c. This release of chemicals
depends on both the internal state of the agents and the environment.
We assume the source strength to be of the threshold form, Eq. (4),
where β denotes the release rate and cth a threshold above which
agents can detect and relay signals and below which they remain
quiescent; Θ xð Þ denotes the Heaviside step function with

ΘðxÞ � 1 , for x >0,

0 , else:

�
ð11Þ

The agent’s signaling receptors are assumed to undergo state-
dependent changes in susceptibility that implement potential satura-
tion effects and adaptation to varying levels of signaling molecules in
the environment. Specifically, we take the threshold value cth to be a
linear function of the state variable si,

cth si
� �

=
si +b
a

, ð12Þ

implementing a higher threshold for signal detection at larger state
values of the refractoriness si. The parameter b sets the baseline
threshold and the factor 1/a specifies the linear increase of the
threshold cth si

� �
with growing state values. In addition, to implement

the agents’ ability to processdetected signals and respond to them, the
release of chemicals shall depend on the internal state si of an agent: In
terms of their signal production, agents in the most susceptible state
(si =0) react most vigorously to super-threshold stimuli. The rate of
signal release is assumed to decrease linearly (1� s) with increasing si.
Note that for the set of parameters used in this study, Supplementary
Note 3, the states si do not exceed values of one. Therefore, agents are
always either quiescent and do not contribute to the chemical
signaling field or act as sources for it.

Taken together, the interplay between the internal dynamics s and
the chemical field c in a well-mixed environment is given by

ds
dt

= ϵ c� sð Þ, ð13Þ

dc
dt

= � αc+βϕ s,cð Þ, ð14Þ

which also accounts for degradation of the emitted signal at a rate
α. Equations (13) and (14) constitute a nonlinear two-component sys-
tem, which shows excitable behavior; see Supplementary Fig. 3a for an
illustration of the phase-space flow. The quiescent state, corresponding
to c= s =0, is linearly stable and has a finite domain of attraction.
However, if for s =0 the input signal cin exceeds the threshold
cin>cth s =0ð Þ= b=a, the system performs a long excursion in phase
space before returning to c= s =0; see the red phase space trajectory in
Supplementary Fig. 3a. Note that the amplitude of the response (extent
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of the red trajectory in phase space) ismainly determined by the phase-
space flow and only weakly depends on the initial input strength cin.
This ensures a sufficiently strong transmission of any super-threshold
signals. The phase-space trajectory in Supplementary Fig. 3a yields the
excitation pulse displayed in Supplementary Fig. 3b, which shows fast
excitation andemission of signals and a slower refractory dynamics that
restores the susceptible state (c= s =0). The duration of the refractory
period τ is determined by the inverse of the relaxation rate ϵ�1.

Taken together, the excitable dynamics resemble the behavior of
a Schmitt trigger (Fig. 1c), a circuit with closed negative feedback,
which exhibits hysteresis-like dynamics representative of e.g., relaxa-
tion oscillators. In particular, the appropriate delay between the fast
production of signaling molecules and the slower adaptation of the
agent’s internal state can be achieved by choosing β=ϵ≫1, resulting in a
relaxation dynamics with a rapid response to a stimulus followed by a
slower refractory period. Model parameters are summarized in Sup-
plementary Note 3.

To formulate the spatial dynamics of the signaling molecules in
terms of a concentration field c, one must specify how the molecules
emitted by the agents are distributed in their vicinity. We use a source
distribution given by a normalized Gaussian profile
f ∼ exp � x2 + y2

� �
= 2w2
� �� 	

with characteristic width w � 2rp. In addi-
tion, we account for the center-of-mass diffusion (with diffusion
coefficient Dc) and degradation with rate α, so that together with the
source terms for each agent one obtains Eq. (3). We choose the decay
rate α to be of the same order of magnitude as the positive source
contributions, terms ∼β, to the signaling field c for average agent
densities. On the scale of individual agents, signal diffusion is assumed
to be fast compared to the agents’ self-propulsion velocity,
1≪Dc= rpv0

� �
. The parameters used in the numerical simulations are

specified in Supplementary Table 1.

A detailed description of the hydrodynamic model
In this section, we give a detailed description of the hydrodynamic
model, Eqs. (6)–(9), that we introduced in the main text for commu-
nicating active-matter systems. This dynamicfield theory is formulated
in terms of a set of evolution equations for the following fields: the
number density of particles ρ, the vector order parameter character-
izing the particles’ local average polar alignment p= ni


 �
, the con-

centration of the signaling species c, and the state of refractoriness s. A
representative vortex solution with internal spiral-wave activity of the
signaling fields is shown in Supplementary Fig. 3a. We observe an
approximately circular high-density cluster within which the particle
orientation revolves around its center and aligns with the density
gradients at the interface to the outer low-density regime. This vortex
state is accompanied by the emergence of a spiral wave established
inside the high-density domain by the chemical field and the adapting
signaling states of the agents.

The time evolution of the agent’s density field ρ r,tð Þ, Eq. (6), is
given by an advection-diffusion equation, which accounts for advec-
tive transport due to the particles’ self-propulsion with speed v0 and
diffusion of the center of mass with diffusion constant Dρ. The center-
of-mass diffusion has no direct counterpart in the agent-based model
as it has been neglected there. However, for completeness and to
regularize density gradients, it is included in the hydrodynamic theory.

The direction of self-propulsion, described by the polar fieldp r,tð Þ,
can be changed by interparticle interactions, stochastic fluctuations,
and signaling-induced reorientations: The first three terms in Eq. (7) for
the time evolution of the polarity field correspond to a time-dependent
Ginzburg-Landau model describing the dynamics close to an isotropic-
polar phase transition; units for the density ρ are chosen such that the
critical density is set to unity. The persistence parameter σ defines the
relaxation time, the parameter δ sets themagnitude of polar order, and
Dp implements the elasticity in a one-Frank-constant approximation.
Moreover, to make the model more general, we include a term χp � ∇p

that accounts for self-advection. In the numerical simulations, the cor-
responding parameter χ is set to a small value and does not contribute
critically to the qualitative behavior of the system. The coupling
between the orientational order and density combines both self-
advective and steric effects incorporated in the function

Q ρð Þ= v0
2

exp �32ρð Þ+ exp 16 ρ� 2ð Þð Þ½ �: ð15Þ

The steric effects can be modeled as an effective pressure. As
derived in Supplementary Note 1, see Supplementary Eq. (11), we
include the low-density contribution as an amplitudeQ ρ ! 0ð Þ= v0=2.
For increasing densities, we assume that collective effects arising from
particle interactions counteract the steric repulsion, and therefore
reduce the amplitude of the function Q ρð Þ. Complementing this, for
high densities, the effective pressure contributions outweigh the col-
lective effects again due to the finite volume of agents. Therefore, the
amplitude Q ρð Þ increases at a critical maximum density of ρ=2. The
coupling of the polar order to signaling encoded by the chemical
concentration field enters in Eq. (7) via the term ω∇c. It describes the
alignment of the polarization field in the direction of the local max-
imum of the signal concentration c with susceptibility parameter ω.

The dynamics of the chemical concentration field c, Eq. (8), is a
direct transfer from the agent-based model, Eq. (3). Coarse-graining
the equation, we replace the discrete sumofGaussian source terms∑i f
(|r−ri|) by a density-dependent continuous contribution ∼ρ r,tð Þ.

The dynamics of the state variable s, Eq. (9), includes diffusive,
reactive, and advective contributions. Here, the first term simply cor-
responds to the center-of-mass diffusion of the agents as in Eq. (6). The
second term corresponds to the relaxation of the local state variable s
to the corresponding local value of the signaling field c, where ϵ
denotes the relaxation rate.

Therefore, themagnitude of the rate ϵ controls the timescale over
which the internal signaling state s adapts to the chemical concentra-
tions c. Finally, the term ∼p � ∇s incorporates the local change of the
agents’ signaling states s by means of their self-propulsion. The reg-
ularizing prefactor �v= v0 tanh ∣p∣=ρ

� �
=∣p∣ ensures the boundedness of

effective self-propulsion velocities for low densities ρ ! 0.

Numerical implementation
We integrate the agent-based model, Eqs. (1)–(5), on a square periodic
domain with side length L over discretized time intervals Δt. For each
time step, the continuous particle positions and orientations are
updated following Eqs. (1), (2) and the hard-core repulsion rule, using
an Euler-Maruyama scheme. For efficient identification of potential
interaction partners at each time step, particles are assigned to virtual
grid cells. We check for collisions within a particle’s grid cell and its
surrounding cells. Agents that pass through a virtual grid cell’s
boundaries are reassigned to their new grid cell. Based on the updated
agent positions, we compute the agents’ source contributions, ∼β to
the continuous signaling field c. Subsequently, we solve the temporal
dynamics of the signaling field, Eq. (3), in Fourier space by a forward
Euler integration scheme and then obtain the representation in real
space by inverse Fourier transform. We apply a fast Fourier transform
algorithm for these transformations. Concluding the calculations for a
given time, we update the internal states of the agents using the same
forward Euler time integration scheme for Eq. (5). For the simulations
with 4000 agents, shown in Fig. 1, we use a total system size of
200 × 200, resolved by 200 Fourier modes per spatial direction and a
time step of Δt =0:01: The depicted solutions are neither dependent
on the selected spatial or temporal resolution which we verified by
corresponding simulations with higher accuracy.

The set of continuous hydrodynamic Eqs. (6)–(9) is solved in a
square periodicdomain by a quasi-spectralmethod and a semi-implicit
time integration with discretized time steps Δt.
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For each time step, we make use of fast Fourier transform of the
field quantities to calculate their spatial derivatives. Also, we compute
the Fourier transform of the nonlinear contributions to the dynamics,
and apply an exponential time differencing scheme of second order
(ETD2) to integrate the complete set of equations in Fourier spaceover
a time interval Δt52. In doing so, all linear contributions to the
dynamics, Eqs. (6)–(9), are implicitly solved for, while nonlinearities
are included explicitly via their first-order forward finite difference
approximation. The eigenvalues and pseudoinverse of the matrix
representation of the linear dynamics of Eqs. (6)–(9), necessary for
ETD2, are calculated once at the beginning of the runtime using the
linear algebra library Eigen53. We initialize the system with homo-
geneous densities and polarity fields with small zero-mean white noise
perturbations. The chemical system is initialized by exciting randomly
positioned and oriented two-dimensional Gaussian kernels of char-
acteristic lengths ranging from20 to 30units andwidths of 5 units. The
model parameters are given in Supplementary Note 3. For all simula-
tions, time steps and spatial resolutions havebeen adapted tooptimize
runtime while ensuring that results do not depend on the chosen
discretization.

Quantification of the aggregation process
The self-sustaining signaling mechanism we consider has a threefold
effect on the formation and organization of large-scale structures in
the active polar system. Firstly, signaling enables pattern formation
from a homogeneous density, even below the critical density (ρc � 1)
for the polar ordering transition. Secondly, stronger chemotactic
susceptibility of the polar orientation to the established signaling
significantly increases the rate of the self-organization process, as can
be seen in Supplementary Figure 1. Starting from an initially spatially
uniform density ρ0, the aggregation times Taggr for crossing the
isotropic-to-polar ordering transition at ρc � 1 decrease significantly
for larger signal susceptibilities ω. And thirdly, spiral waves as sources
of persistent signaling activity can stabilize the emerging vortex
structures, as can be seen from the results of the numerical simula-
tions, e.g., Fig. 3. To gain a better understanding of the principles
underlying the signal-driven self-organization process and to quantify
the degree and type of ordering, we use cluster classification analysis
and quantify the time evolution of the information content in the
system. Both methods are presented in more detail below.

In our numerical simulations, we observe that distinct collective
states dominate the different phases of aggregation; see Fig. 3, Sup-
plementary Movie 8. During an initial phase, droplets of agents are
formed and undergo Ostwald-type ripening. Once spiral waves are
established as persistent signaling sources, the droplets show directed
motion toward the strongest of these sources, i.e., they become ‘active’
droplets. The coalescence of these active droplets leads to the for-
mation of collective density streams. Eventually, streams and active
droplets approach the source of the organizing signal, where they
condense into stable clusters. The interplay of aggregation due to the
intrinsic signaling and the self-propulsion of the polar active matter
typically results in localized vortex solutions. As a means of classifying
the various collective states discussed above, namelydroplets, streams
and vortices, we analyze clusters with densities ρ>0:7 (above the sys-
tem’s average density, which we typically set to ρ0 =0:6) by quantify-
ing their total mass, spatial extension along their main axes, and the
direction of the effective self-propulsion of the cluster. The latter
represents the direction of the cluster’s center-of-mass motion,
∼
R
pðr, tÞdr. In particular, wemeasure the spatial extension of clusters

along their main axes (axes with largest spatial extent), the angle
between the main axis and the averaged cluster polarity, and the
intrinsic vorticity ∇×p of the orientational field.

We classify a given aggregate as a stream if the shape factor (the
ratio of major to minor diameter) is larger than 1.4 and the angle
between the major axis and polarity is smaller than π=4; if the shape

factor is less than 1.4 and themean vorticity inside the domain exceeds
a value of 0.01, the aggregate is classified as a vortex. Clusters char-
acterized as neither streams nor vortices are classified as droplets.
Information about domain position, orientation and shape is obtained
by using the first three central moments of the binarized domain with
density threshold ρ=0:7.

As a measure for emerging order in the system, and to quantify
the impact of the signaling machinery on the aggregation process, we
consider the total amount of information stored in the system. Fol-
lowing references47,48, the information content can be obtained by
lossless compression of the system’s data, i.e., the data points of the
discretized continuous fields, Eqs. (6)–(9), for a given time.We analyze
the fields at discrete time points with step size Δt = 200 for total
simulation times of tsim =40,000. In order to measure the informa-
tion content of the system for a given time, we saved the data of all the
separate fields into a collective image with a spatial discretization of
128 by 128 pixels per field and 256 gray values per pixel. Subsequently
we use the lossless compression in the PNG format to compute the
stored information content. The resulting file sizes then give a corre-
sponding amount of stored information as discussed in the main text;
see Fig. 3e, f. Information processing in the system is facilitated by two
distinct processes: polar ordering due to pairwise collisions and
decision-making of the individual signaling units, as specified by the
excitable signaling field dynamics. Below the isotropic-to-polar tran-
sition at the critical density (ρc = 1), the disordering effect of the agent’s
angular diffusion dominates over their ordering alignment dynamics,
such that in the absence of chemical signaling the system must relax
toward a homogeneous disordered state. This relaxation process is
expected to proceed at a rate λ. As an organizing factor, the signaling
machinery counteracts the natural trend of the polar active-matter
system toward the homogeneous state. We hypothesize that most of
the information processing occurs through the signaling machinery,
and we quantify its activity by the information processing rate R. The
latter is represented by the area fraction of the excitable system in the
refractory state. Specifically, we define this state as exhibiting a super-
threshold concentration in the chemical signaling field, c>1. Taken
together, we posit that the time evolution of the stored information
content I can be approximated as given in Eq. (10). By means of this
dynamic equation, and based on the assumption that information in
the system ismainly processed by the signalingmachinery, we are able
to predict the temporal evolution of the total stored information.
Starting from a value of the system’s initial information content, and
supplied with the time-dependent processing rates R, Eq. (10) allows
for a prediction of the temporal dynamics of the stored information.
The comparison between this prediction and the actual dynamics of
the stored information content quantifiedby thefile sizeof the lossless
compressed data at a given time in Fig. 3e yields good agreement. This
again validates the basic assumption of signaling-mediated informa-
tion processing in the system.

Based on the cluster classification and cluster number analysis, we
can quantify the three main stages of the aggregation process descri-
bed above and in the main text; see also Fig. 3 and Supplementary
Movies 1 and 8. In the following, we describe the basic modes of mass
aggregation in terms of the efficiency of the processes. Consider a
system of droplets of equal size, concentration n and diffusion coef-
ficient D∼ Sγ, with a yet-to-be determined exponent γ relating the
diffusion to the droplet sizes S. For diffusion-limited coalescence of
droplets in two spatial dimensions, the time dependence of droplet
sizes and numbers is given by54

S∼ tz ,Nc ∼ t�z , ð16Þ

where the exponent z can be determined from the hydrodynamic
equations underlying the aggregation process at the corresponding
stages. For instance, the probability of coalescence in a binary collision
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process is given by n2, and thus, the mean-field equation for the
droplet density n reads

dn
dt

= � D Sð Þn2 = � D0S
γn2: ð17Þ

Substituting the expressions for S and n, one obtains for the
exponent

z =
1

1� γ
: ð18Þ

For the case where diffusion does not depend on the cluster size,
γ =0, one obtains Nc ∼ 1=t. This behavior is similar to the interface-
controlled Ostwald ripening for which the coarsening of droplets is
independent of their diffusive motion. In addition, our hydrodynamic
model gives rise to directedmotion of active droplets, which is guided
by organizing spiral waves. Including the guided movement of active
droplets toward the organizing vortices, one can estimate the cluster
number dynamics by

Nc tð Þ∼ N0 � κt2
� �

=t, with κ>0: ð19Þ

This estimate incorporates the directed ballistic motion of clus-
ters toward a collective aggregation center ∼N0 � κt2. Moreover,
these clusters may still exhibit interface-driven coarsening, which is
accounted for by an additional factor t�1. Thus, the estimate captures
the main behavior of the first two aggregation stages, which are
dominated by Ostwald ripening and coordinated movement of dro-
plets toward spiralwaves as organizing centers. This becomesmanifest
in a good qualitative agreement between the estimate and the mea-
sured evolution of the cluster number as shown in Fig. 3a, with fit
parameters N0 = 382,000 and κ =0:15. However, at longer times,
vortex-vortex competition, which is not accounted for in the given
estimate, becomes increasingly important. Therefore, the deviations
between the estimated andmeasureddynamicsof the cluster numbers
grow as the aggregation process progresses.

Data availability
The data that support the findings of this study are available in the
main text, methods, and supplementary information. Additional
information is available from the corresponding authors upon request.

Code availability
The code used in this study is available from the corresponding
authors upon request.
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Supplementary Notes

1 Derivation of the hydrodynamic equations through a Boltzmann-
like kinetic approach

In this section we show how the set of hydrodynamic equations,

∂tρ(r, t) = −v0∇ · p +Dρ ∆ρ , (1a)

∂tp(r, t) = σ (ρ− 1)p− δ |p|2 p +Dp ∆p− χp ·∇p−Q(ρ)∇ρ+ ρω∇c , (1b)

∂tc(r, t) = Dc ∆c− α c+ ρ βΘ (c− cth) (1− s) , (1c)

∂ts(r, t) = Dρ ∆s− ε (s− c)− v̄ p ·∇s , (1d)

can be derived from a Boltzmann-like approach for the probability density P (r, ϕ, t) of
finding a particle at position r with orientation ϕ at time t; the particle’s orientation is
signified by the unit vector n = (cosϕ, sinϕ)T . The equation accounts for center-of-mass
diffusion, particle self-propulsion, rotational diffusion, alignment with the signaling field, and
interactions between particles:

∂tP (r, ϕ, t) = Dρ∂i∂iP − v0 ∂i(niP ) + ∂ϕ
[
DR∂ϕ + ω(c) sin(ϕ− ϕc)

]
P + interactions . (2)

The advection term together with the rotational diffusion describe the self-propelled motion
of the particles combined with the angular noise as in the agent-based model. The fourth term
corresponds to a probability flux directed towards orientations that are aligned with the local
gradients of the signaling field c with sensitivity parameter ω(c) and ϕc ≡ tan−1(∂yc/∂xc) =
angle (∇c). The interaction contributions will be discussed further below.

We follow the standard approach for deriving hydrodynamic equations from a Boltzmann-
type of equation by expanding the probability density function in Fourier modes for the
spatial orientation of the director n in two-dimensional space1,2,

P (r, ϕ) =
∑
k

Pk(r) eikϕ , (3)

whereby, for the sake of brevity, we suppress the time dependency here and in the following.
The corresponding Fourier coefficients follow from the forward transform

Pk(r) =
1

2π

∫ 2π

0

dϕP (r, ϕ) e−ikϕ . (4)

We define the particle density ρ and the density-weighted polar order p by relating them to
the harmonics via the Fourier expansion, Eq. (3):

ρ(r) ≡
∫ 2π

0

dϕP (r, ϕ) = 2πP0 , (5)

p(r) ≡
∫ 2π

0

dϕn(ϕ)P (r, ϕ) ,

=
∑
k

1

2

∫ 2π

0

dϕ
(
eiϕ + e−iϕ, i

(
e−iϕ + eiϕ

) )T
Pk(r) eikϕ ,

= π
(
P1 + P−1, i(P1 − P−1)

)T
. (6)
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To describe the intrinsic states of the communicating active matter, we introduce a
probability density P s(s) of particles in a given signaling state s and assume that the total
probability density Ptot(r, ϕ, s) = P s(s)P (r, ϕ) factorizes in a part for the signaling state
and the distribution for the agent’s positions and orientations. Thus, the density-weighted
signaling state of the agents is given by

s̄ ≡
∫

ds

∫ 2π

0

dϕ sP s(s)P (r, ϕ) . (7)

In the following, the different contributions to the Boltzmann equation, Eq. (2), are ana-
lyzed separately. First, in order to derive expressions for the diffusive contributions in the
hydrodynamic equations we use the projection onto the m-th harmonic,

(. . .)
m

=
1

2π

∫ 2π

0

dϕ e−imϕ (. . .) , (8)

which gives the m-th Fourier coefficient to the expansion above, Eq. (3). Applying the
projection operator, Eq. (8), onto the corresponding term in Eq. (2) one obtains

∂tρ = Dρ∆ρ , (9)

for the dynamics of the density. One would obtain the same dynamics for the center-of-mass
diffusion in the polar order field, but contributions from interaction kernels, representing
elasticity of the polarity field, can lead to similar terms, which is why we assume a different
coefficient Dp for the polar field. Continuing with the advective term, (i.e. ∼ v0), the
projection onto the modes yields

∂tPm(r) = −v0∂i(niP (r, ϕ))
m
,

= − v0
2π

∫ 2π

0

dϕ
∑
k

Pk(r)eikϕ

[
∂xe

−imϕ (eiϕ + e−iϕ)

2
+ ∂ye

−imϕ (eiϕ − e−iϕ)

2i

]
,

= −v0
2

[
∂x
∑
k

Pk(r)(δk,m−1 + δk,m+1) + i∂y
∑
k

Pk(r)(δk,m+1 − δk,m−1)

]
. (10)

With the definitions, Eqs. (5) and (6), we obtain for the field variables

∂tρ(r) = 2π∂tP0(r) = −v0∂ipi(r) , (11)

∂tpx(r) = π∂t(P1(r) + P−1(r)) = −v0
2
∂xρ(r) , (12a)

∂tpy(r) = iπ∂t(P1(r)− P−1(r)) = −v0
2
∂yρ(r) . (12b)

Since a Boltzmann-approach is by design a low-density approximation, these results must
be interpreted as such and require for an extension to assure well-behavedness at higher
densities. Notably, this applies to the coupling of the polarity field to density gradients,
∂tpi ∼ −1

2
v0 ∂iρ. At low densities, this term accounts for an effective pressure, increasing

with increasing particle densities. At higher densities, other cooperative effects emerging
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from anisotropic interactions can dominate the coupling of the polarity field to density gra-
dients, counteracting the repulsion dominating at low densities. In addition, at a critical
maximum density, which we set to ρ = 2, the effective pressure increases significantly due
to the finite volumes of the agents. Therefore, steric interactions dominate the cooperative
interactions for ρ → 2. We account for these effects by extending the terms ∼ −∂iρ by a
density-dependent prefactor Q(ρ) which is proportional to v0 and has the following form:

Q(ρ) =
v0
2

[
exp (−32ρ) + exp (16(ρ− 2))

]
. (13)

The function Q(ρ) captures the repulsion at low densities which decays for intermediate
densities due to cooperative effects. Moreover, it limits the maximum density to values
ρ ≈ 2 taking into account the steric repulsion at dense packing of the agents. The presented
results do not qualitatively depend on the particular choice of the function Q(ρ). The scalar
field corresponding to the agent’s signaling activity, Eq. (7) is directly associated with the
agents. Hence, in the same way as the particles it is advected with the polar flow and exhibits
center-of-mass diffusion. From the definition, Eq. (7), we obtain

∂ts̄ = −v0
∫

dϕ ds s∂iniP ,

= −v0
∫

dϕ ds s

[
∂x
eiϕ + e−iϕ

2
+ ∂y

eiϕ − e−iϕ

2i

]∑
k

P kP s ,

= −2πv0

∫
ds s

[
1

2
∂x
(
Pϕ
−1 + Pϕ

1

)
+

1

2i
∂y
(
Pϕ
−1 − P

ϕ
1

)]
P s ,

and with the definition of the polarity field, Eq. (6),

∂ts̄ = −v0∂i
(
s̄ pi
ρ

)
. (14)

Thus, the complete diffusive and advective contributions to the dynamics of the density
weighted signaling state s̄ = ρs are given by

∂ts̄ = Dρ∆s̄− v0∂i
(
s̄pi
ρ

)
. (15)

Correspondingly to the agent-based model, we re-express the state field s̄ in terms of the
’state concentration‘, i.e., the local state normalized by the particle density, s by replacing
s = s̄/ρ in Eq. (15); one obtains

∂ts = Dρ∆s−
v0pi
ρ
· (∂is) , (16)

where we neglected cross-gradient contributions in the density ρ and the field s.
Next, we turn to the contribution of the angular noise to the dynamics of the polar field.

Fourier-expanding the corresponding term ∼ DR in Eq. (2) and projecting it onto the jth

harmonic according to Eq. (8), yields the equation

∂tPj(r) = −DRj
2Pj(r) (17)
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and, thus, with the definition of the polar field, Eq. (6),

∂tp(r) = −2DR p(r) . (18)

Finally, regarding the alignment of the agents’ orientation vectors with gradients of the
signaling field c, we want to briefly highlight the origin of the corresponding terms, ∼ ω, in
the Boltzmann equation (2) starting from the proposed underlying Langevin dynamics

∂r

∂t
= v0n(ϕ) ,

∂ϕ

∂t
= ξ(t) + ω(c) sin (ϕ− ϕc) ,

(19)

with the particle position vector r and the angle of the chemical gradient ϕc = angle(∇c).
The chemotaxis contributes to the Boltzmann equation, Eq. (2), directly as the angular drift
term

∂tP ∼ −∂ϕ [ω(c) sin (ϕ− ϕc)]P . (20)

Expanding the probability density in the Fourier harmonics as in Eq. (3), one obtains

∂tPk = −ω(c)

2π

∫ 2π

0

dϕ e−ikϕ∂ϕ

[
sin (ϕ− ϕc)

∑
k′

Pk′e
ik′ϕ

]
, (21)

and after integration by parts

∂tPk = −ikω(c)

2π

∑
k′

∫ 2π

0

dϕ [cos(ϕc) sin(ϕ)− sin(ϕc) cos(ϕ)]Pk′e
i(k′−k)ϕ ,

= −ikω(c)

4π

∑
k′

[cos(ϕc) (iδk,k′−1 − iδk,k′+1)− sin(ϕc) (δk,k′−1 + δk,k′+1)]Pk′ . (22)

Using the definitions, Eqs. (5),(6), and neglecting contributions of the second harmonics, the
response of the dynamics of p to the signaling stimulus is given by

∂tpi = ω ρ ∂ic , (23)

where we chose a linear dependence of the alignment strength on the signaling amplitude c,
namely ω(c) = 4π ωc. The contributions arising from particles’ interactions can be motivated
as done in Refs.3–5. As such, we include for completeness an elasticity like contribution

∂tp ∼ Dp∆p , (24)

and a self-propulsion
∂tp ∼ χp · ∇p , (25)

in the model. Both terms may arise from anisotropic interactions, e.g., for elongated particles.
They are not included in the agent-based model and we set the corresponding parameters
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Dp and χ to small values as the effects are not crucial for the reported behavior of signaling
active matter. Altogether we obtain the set of hydrodynamic equations

∂tρ(r, t) = −v0∇ · p +Dρ ∆ρ , (26a)

∂tp(r, t) = σ (ρ− 1)p− δ |p|2 p +Dp ∆p− χp ·∇p−Q(ρ)∇ρ+ ρω∇c , (26b)

∂tc(r, t) = Dc ∆c− α c+ ρ βΘ (c− cth) (1− s) , (26c)

∂ts(r, t) = Dρ ∆s− ε (s− c)− v̄ p ·∇s , (26d)

complementing the derived contributions from the Boltzmann equation, Eq. (2), with the
interaction terms, Eqs. (24), (25), and the continuous versions of the equations for the
signaling machinery, Eqs. (3), (5) in the main text.

2 Reduced model without decision making

To highlight the role of the individual decision making for the multi-scale aggregation process,
for comparison we also investigate the behavior of a system lacking such a mechanism. In
particular, we modify the source dynamics given in main text Eq. (3), such that it becomes
independent of the agents’ internal state,

∂tc(r, t) = Dc∆c− αc+ β
N∑
i=1

f(r, t) . (27)

The polar agents with dynamics given by main text Eqs. (1), (2), and supplementary in-
formation Eq. (27), are assumed to contribute as persistent sources of the signaling field.
Similar to what has been reported in reference6, we observe aster-like stationary cluster
formation with interface controlled ripening, see Supplementary Fig. 4a. Moreover, the in-
terplay between self-propulsion and attraction towards a local aggregation center can give
rise to short-lived ring-like structures and vortices which eventually tend to dissolve into a
few aster-like aggregates as depicted in Supplementary Fig. 4b. Since in the modified model
there is only local interactions mediated by the comparably slow diffusion of the signaling
field, it does not exhibit a collective long-range organization of aggregation centers. In con-
trast to a system with active decision making, here the established smaller aggregates collide
and merge upon random encounters.
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3 Model parameters

The supplementary tables 1-3 provide an overview of the system parameters used in the
numerical simulations shown in the main text as well as in the supplementary figures and
movies. We measure densities in units of the critical density for the isotropic-polar transition.
Time is given in units of the signal decay rate [α] and lengths are given in units of the resulting
diffusion length

√
Dc/[α].

Supplementary Tables

Parameter Description Value (continuum model) Value (agent-based)
α signal decay rate 10 0.9
β signal production rate 40 2
a threshold factor 0.9 0.9
b constant threshold 0.05 0.05
ε refractory rate 4 0.3
Dc signal diffusion 1 0.9

Supplementary Table 1: Parameters of the signaling system, Eqs. (1c), (1d), in the excitable regime used for
the hydrodynamic- and the agent-based model, respectively.

Parameter Description Value
v0 propulsion speed 0.2
DR rotational diffusion 0.05
rc interaction radius 2
rp particle radius 0.25
Γ polar alignment factor 0.1

Supplementary Table 2: Parameters of the agent-based model as detailed in Methods. The chemical suscep-
tibility parameter in main text Fig. 1 is set to ω ∈ {0.1, 0.4, 0.004, 0.2, 0.004} for panels e-i, respectively.
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Value
Parameter Description Default Fig. 1j Fig. 1k Fig. 1 l,n Fig. 1 m

v0 motility 0.5 0.1 0.5 0.2 0.1
σ polar persistence parameter 0.01 0.1 0.2 0.5 0.05
ω signal susceptibility 0.1 0.8 0.3 0.8 0.4
Dρ translational diffusion 0.05
Dp elasticity parameter 0.1
χ convective derivative coefficient 0.1
δ magnitude of bulk order 1.0
ρ0 average density 0.6

Supplementary Table 3: Parameters of the hydrodynamic continuum model, described in Methods. Figure
numbers correspond to main text figures.
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Supplementary Figures
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Supplementary Figure 1: Signaling-enhanced aggregation capabilities. a, Aggregation times Taggr of the
hydrodynamic system, main text Eqs. (6)-(9), reaching the polar-order transition at ρ = 1 from a homoge-
neous initial density ρ0. We observe faster aggregation for higher initial densities as well as larger signaling
susceptibilities ω. b, Corresponding temporal evolution of the system’s maximum density ρmax evolving
from a homogeneous initial density ρ0 = 0.4 for different values of ω. We determine the aggregation times
Taggr (dashed colored lines) as the first times at which the critical density (dashed black line) is reached,
ρmax = ρc = 1. Other parameters as given in SI section 3.

Supplementary Figure 2: Spiral waves and vortex solution in the hydrodynamic model. a, Vortex solution
with persistent spiral wave activity in the hydrodynamic model, see Methods. The composite image contain-
ing layers representing the orientation vector field p(r) (arrows), the local density profile ρ(r), concentration
of signaling molecules c(r), and field of state s(r). b, Dependence of spiral frequency on spatially homoge-
neous density values ρ. Error bars indicate error ranges arising from the numerical measurement of spiral
frequencies. Parameters as stated in SI section 3.
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Supplementary Figure 3: Excitable dynamics of the well-mixed signaling system. The agents serve both as
a source of chemical signals and can adapt their internal state to the chemical environment. In this process,
the release of the chemicals by the agents depends on the internal state of the agents and the state of the
environment. The combination of these factors leads to a ‘sense-and-response’ system that exhibits excitable
dynamics. a, Phase-space flow of the excitable system, main text Eqs. (3), (5). The black line indicates
the nullcline c = s of the agents’ state kinetics, main text Eq. (5). Due to the discontinuous switch in the
agents’ signal relaying capability, there are two nullclines (violet and orange) originating from the signaling
kinetics, main text Eq. (3), with c = β/α(1 − s) and c = 0, respectively. These nullclines are valid in the
correspondingly colored areas c ≷ (s+ b)/a. The red trajectory highlights an excursion in phase space upon
initial excitation. b, Dynamics of the chemical concentration c and the signaling state s corresponding to
the red trajectory in a. Parameters as stated in SI section 3. Time is measured in the units of the decay
rate [α].
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30

time
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Supplementary Figure 4: Time evolution of a reduced model, lacking the internal decision making machinery
of the self-propelling agents, main text Eqs. (1), (2), and SI Eq. (27). The two parameter regimes shown
in panels a and b illustrate localized cluster formation as a generic form of aggregation in the model. The
clusters exhibit an interface-controlled coarsening behavior. a, Formation of localized clusters for small polar
alignment Γ = 0.01. b, Cluster formation with intermediate transient solutions for stronger polar alignment,
Γ = 0.1. Agent colors indicate the polar orientation and background colors represents concentrations of the
communication field c(r, t), see Eq. (27). Parameters as in table 2 with rp = 0.5, β = 0.9, and ω = 0.05.
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Description of Supplementary Movies1

To view the animations, click on https://www.nature.com/articles/s41467-022-
34484-2 and locate the text Supplementary Movie 1 to Supplementary Movie 9 
etc near the bottom of the page. 

Supplementary Movie 1: Aggregation process in agent-based and hydrodynamic model. Visual
comparison of the aggregation process from a homogeneous disordered state in the agent-based 
model (left) and the hydrodynamic model (right). We observe a very similar behavior with an initial
formation of smaller droplets that subsequently organize into streams. Particles collectively 
propagate in active droplets towards emerging vortices as organization centres with internal spiral 
wave activity. Parameters for the agent-based simulation are N=8,000, ⍵=0.2. Parameters of the 
hydrodynamic model are Dc=2, ε=0.8, ⍺=2, β=8, σ=0.02 and remaining values as given in 
Supplementary Information section 3. Scale bars indicate a length of 10 units.

Supplementary Movie 2: Droplets as predominant collective dynamic states. Temporal dynamics of
the density ρ (left) and the signaling field c (right) together with the local orientation p indicated by 
arrows. Results of numerical simulations of the hydrodynamic model accompanying Fig. 2.

Supplementary Movie 3: Vortices as predominant collective dynamic states. Temporal dynamics of
the density ρ (left) and the signaling field c (right) together with the local orientation p indicated by 
arrows. Results of numerical simulations of the hydrodynamic model accompanying Fig. 2.

Supplementary Movie 4: Rings as predominant collective dynamic states. Temporal dynamics of 
the density ρ (left) and the signaling field c (right) together with the local orientation p indicated by 
arrows. Results of numerical simulations of the hydrodynamic model accompanying Fig. 2.
Supplementary Movie 5: Silent bands as predominant collective dynamic states. Temporal
dynamics of the density ρ (left) and the signaling field c (right) together with the local orientation p
indicated by arrows. Results of numerical simulations of the hydrodynamic model accompanying 
Fig. 2.

Supplementary Movie 6: Streams as predominant collective dynamic states. Temporal dynamics of
the density ρ (left) and the signaling field c (right) together with the local orientation p indicated by 
arrows. Results of numerical simulations of the hydrodynamic model accompanying Fig. 2.
Supplementary Movie 7: Polar bands with signaling activity as predominant collective dynamic
states. Temporal dynamics of the density ρ (left) and the signaling field c (right) together with the 
local orientation p indicated by arrows. Results of numerical simulations of the hydrodynamic 
model accompanying Fig. 2.

Supplementary Movie 8: Hierarchical aggregation and information processing. Time evolution of
the density and signaling fields and corresponding information measures accompanying the data 
shown in Fig. 3.

Supplementary Movie 9: Ring annihilation due to interaction with a vortex. A stable vortex interacts
with a meta-stable ring. Due course of time, the ring is destabilized by the interaction with the 
vortex and mass is transferred to the latter in a stream-like fashion. Parameters of the hydrodynamic
simulation as detailed in Supplementary Methods section 3, with σ= 0.05

1 Source: modified from https://static-content.springer.com/esm/art%3A10.1038%2Fs41467-022-34484-2/
MediaObjects/41467_2022_34484_MOESM2_ESM.pdf
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Harvard John A. Paulson School of Engineering and Applied Sciences

Researchers took inspiration from ants to design a team of relatively

simple robots that can work collectively to perform complex tasks using

only a few basic parameters.

FULL STORY

Individual ants are relatively simple creatures and yet a colony of ants

can perform really complex tasks, such as intricate construction,

foraging and defense.

Recently, Harvard researchers took inspiration from ants to design a team of relatively

simple robots that can work collectively to perform complex tasks using only a few basic

parameters.

The research was published in ELife.

"This project continued along an abiding interest in understanding the collective

dynamics of social insects such as termites and bees, especially how these insects can

manipulate the environment to create complex functional architectures," said L

Mahadevan, the Lola England de Valpine Professor of Applied Mathematics, of

Organismic and Evolutionary Biology, and Physics, and senior author of paper.

The research team began by studying how black carpenter ants work together to

excavate out of and escape from a soft corral.

"At first, the ants inside the corral moved around randomly, communicating via their

antennae before they started working together to escape the corral," said S Ganga

Prasath, a postdoctoral fellow at the Harvard John A. Paulson School of Engineering and

Applied Sciences and one of the lead authors of the paper.

Ants primarily rely on their antennae to interact with the environment and other ants, a

process termed antennation. The researchers observed that the ants would

spontaneously congregate around areas where they interacted more often.Once a few

https://www.sciencedaily.com/
https://www.sciencedaily.com/


ants started tunneling into the corral, others quickly joined in. Over time, excavation at

one such location proceeded faster than at others and the ants eventually tunneled out of

the corral.

From these observations, Mahadevan and his team identified two relevant parameters to

understand the excavation task of the ants; the strength of collective cooperation, and the

rate of excavation. Numerical simulations of mathematical models that encode these

parameters showed that the ants can successfully excavate only when they cooperate

with each other sufficiently strongly while simultaneously excavating efficiently.

Driven by this understanding and building upon the models, the researchers built robotic

ants, nicknamed RAnts, to see if they could work together to escape a similar corral.

Instead of chemical pheromones, the RAnts used "photormones," fields of light that are

left behind by the roving RAnts that mimic pheromone fields or antennation.

The RAnts were programmed only via simple local rules: to follow the gradient of the

photoromone field, avoid other robots where photoromone density was high and pick up

obstacles where photoromone density was high and drop them where photoromone was

low. These three rules enabled the RAnts to quickly escape their confinement, and just

as importantly, also allowed the researchers to explore regions of behavior that were hard

to detect with real ants.

"We showed how the cooperative completion of tasks can arise from simple rules and

similar such behavioral rules can be applied to solve other complex problems such as

construction, search and rescue and defense." said Prasath.

This approach is highly flexible and robust to errors in sensing and control. It could be

scaled up and applied to teams of dozens or hundreds of robots using a range of

different types of communication fields. It's also more resilient than other approaches to

collaborative problem solving -- even if a few individual robotic units fail, the rest of the

team can complete the task.

"Our work, combining lab experiments, theory and robotic mimicry, highlights the role of a

malleable environment as a communication channel, whereby self-reinforcing signals

lead to the emergence of cooperation and thereby the solution of complex problems.

Even without global representation, planning or optimization, the interplay between

simple local rules at the individual level and the embodied physics of the collective leads

to intelligent behavior and is thus likely to be relevant more broadly," said Mahadevan.

The paper's other lead authors were Souvik Mandal and Fabio Giardina, and the paper

was co-authored by Jordan Kennedy, and Venkatesh N Murthy, Raymond Leo Erikson

Life Sciences Professor of Molecular and Cellular Biology in the Department of Molecular

and Cellular Biology.

The research was supported in part by the National Science Foundation under grants

PHY1606895, EFRI 18-30901 and 1764269, the Swiss National Science Foundation,
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Abstract The solution of complex problems by the collective action of simple agents in both11

biologically evolved and synthetically engineered systems involves cooperative action.12

Understanding the resulting emergent solutions requires integrating across the organismal13

behaviors of many individuals. Here we investigate an ecologically relevant collective task in black14

carpenter ants Camponotus pennsylvanicus: excavation of a soft, erodible confining corral.15

Individual ants show a transition from individual exploratory excavation at random locations to16

spatially localized collective exploitative excavation and eventual excavate out from the corral. An17

agent minimal continuum theory that coarse-grains over individual actions and considers their18

integrated influence on the environment leads to the emergence of an effective phase space of19

behaviors in terms of excavation strength and cooperation intensity. To test the theory over the20

range of both observed and predicted behaviors, we used custom-built robots (RAnts) that21

respond to stimuli to characterize the phase space of emergence (and failure) of cooperative22

excavation. By tuning the amount of cooperation between RAnts, we found that we could vary23

the efficiency of excavation and synthetically generate the other macroscopic phases predicted24

by our theory. Overall, our approach shows how the cooperative completion of tasks can arise25

from simple rules that involve the interaction of agents with a dynamically changing environment26

that serves as both an enabler and a modulator of behavior.27

28

Introduction29

Collective behavior is seen in organisms acrossmany decades in length-scale, from themicroscopic30

to the macroscopic (Nowak, 2006; Camazine et al., 2020; Gordon, 1999; Seeley, 2009; Couzin et al.,31

2003). These behaviours are often functional and serve as solutions to problems associated with32

a range of tasks that cannot be solved efficiently at the individual level: from brood care to forag-33

ing for food, protection from enemies and predation of prey, building complex architectures etc.34

(Feinerman et al., 2018; Ocko and Mahadevan, 2014; Hölldobler et al., 2009; Peleg et al., 2018;35

Rasse and Deneubourg, 2001). Since collective behavior involves multiple individuals, it necessarily36

involves some form of communication and/or cooperation that takes different forms across scales37

- from quorum sensing in unicellular bacterium and slime molds, to the waggle dance in bees, and38

various forms of physical signal propagation in animal societies and human organizations (Rasse39

and Deneubourg, 2001; Alcock, 2001; Pennisi, 2009; Nowak, 2006; Elster et al., 1998; Couzin et al.,40

2003).41
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Figure 1. Collective dynamics of ant excavation (a) Colony members of the black carpenter ant Camponotus pennsylvanicus are confined to aporous boundary made out of Agarose. The boundary is represented by its radius R(�, t) (� - polar angle, t - time). Bottom part shows theside-view schematic of the experimental set-up with the boundary made of agarose and background IR light source used to image the ants inthe dark. (b) Temporal progression of excavation experiments as 12 ants cooperatively tunnel through the agarose confinement. The white lineis the tracked location of the inner wall which grows in size as the excavation progresses. (c) Confinement area A(t) as a function of time (scaledby time to excavate out of the corral T ), normalized by initial circular confinement with radius Ro. (d) Evolution of the orientation distribution ofthe ant density, a
�(�, t) obtained by averaging along the radial direction. Ants start from an initially isotropic state and localize at an angle �balong the boundary. T here is the excavation time. (e) Dynamics of the radial distribution of ant density a

r (r, t) as a function of radial distance, robtained by averaging a sector of �∕6 around the excavation site. We see that the ant density front propagates through the corral. The density isplotted for the same times as in (d). (f ) Evolution of the power spectrum |R̂(k, t)|2 of first five Fourier modes capturing the number of tunnelsformed during excavation R(�, t) = ∑

k R̂(k, t)eik�. Inset shows the real part of the Fourier coefficient,ℜ(R̂) at different time instants indicatingthat many modes are present in the boundary shape.

The importance of environmental signals is particularly clearly seen in examples of collective42

task execution in social insects that have a long history of documented cooperative behavior (Höll-43

dobler et al., 1990; Gordon, 1999; Perna and Theraulaz, 2017; Mikheyev and Tschinkel, 2004).44

Super-organisms made of individuals that respond to local stimuli with stereotypical actions that45

leave their "mark" on the environment, creating a spatio-temporal memory, and is commonly46

known as stigmergy (Hölldobler et al., 2009). While stigmergy is usually associated with scalar47

pheromone fields, a broader definitionmight include the use of signaling via chemical, mechanical48

and hydrodynamic means (Buhl et al., 2005; Mikheyev and Tschinkel, 2004), as has been quanti-49

fied in recent studies of bees (Ocko and Mahadevan, 2014; Peleg et al., 2018). To understand how50

collective task execution arises, we need to understand how individuals switch from local uncoor-51

dinated behavior to collective cooperation that translates to successful task execution in different52

social systems. From a biological perspective, this naturally involves understanding the neural cir-53

cuits, physiology and ethology of an individual. A complementary perspective at the level of the54

collective is that of characterizing a "crude view of the whole," which entails the quest for a small55

set of rules that are sufficient for task completion and the range of possible solutions that arise56

from these rules that might be tested experimentally. And finally, given the ability to engineer min-57

imally responsive biomimetic agents such as robots (Rahwan et al., 2019), a question that suggests58

itself is that of the synthesis of effective behaviors using these agents. Therefore, we also explore59

regions of phase space that are hard to explore with social insects, to learn about the robustness60

of these behaviors using imperfect agents in uncertain and noisy physical environments, before61

looking for them in-vivo.62

Here we use an ecologically relevant task in carpenter ants Camponotus Pennsylvanicus: exca-63

vation and tunneling, to quantify the dynamics of successful task execution by tracking individual64

ants, use this to create a quantitative framework that takes the form of mathematical models for65
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Figure 2. Evolution of the ant density field, %a(x, t) (in units of #/mm2) as the tunneling progresses forexperiments with 12 major ants. The density field is obtained by averaging the ant locations over 250 secsduring the tunneling process. In the second columns is the evolution of the boundary shape, R(�) as afunction of time where we see multiple excavation sites being explored before one of them succeeds. Thedarker spots in the image are the debris that the ants deposit as they excavate the boundary.

the behavior of how agents communicate and cooperate, and finally synthesize the behavior using66

robots that can sense and act. Our work complements and builds on earlier studies on excava-67

tion (Buhl et al., 2005; Tschinkel, 2004; Deneubourg and Franks, 1995; Deneubourg et al., 2002) in68

social insects that looked at the effects of population size and role of cooperation on efficiency of69

digging and developed 1-dimensional models to understanding the effective excavation process.70

We go beyond these studies by (i) quantifying the collective behavior of ants by tracking them in71

space-timewhile following the dynamics of how they interact with each other and the simultaneous72

excavation a substrate that confines them, and (ii) use our observations to develop a theoretical73

framework that couples the change in ant density, substrate density and the rate of antennation in74

space and time to capture the collective execution of the task. We also identify the non-dimensional75

parameters that define the range of behaviors of the agents and use this to map out the dynamics76

of agents in different phases using an agent-based model. (iii) We then synthesize and recreate77

this behavior using custom-built robots that can respond to each other and the environment to78

show how they can perform this collective task. An important outcome of our study is a phase79

diagram that shows the emergence of different collective behaviors associated with task comple-80

tion as a function of just two dimensionless parameters that characterize the local rules underlying81

individual behavior and the nature of communication between agents, e.g. ants and robots.82

Materials and methods83

Excavation in Carpenter ants84

We start with ants drawn from a mature colony of C. Pennsylvanicus that consist of a queen, the85

sole egg layer, and the workers from three morphologically different castes - major, median and86

minor (Hansen and Klotz, 2005). Though all ants performdifferent tasks like foraging, nest-keeping,87

brood care to a varied degree, during excavation, major ants, equipped with their large mandibles,88

generally take the lead role, while media and minor ants transport the debris outside their nest.89

Ants communicate primarily through their antennae by using them to sense pheromones released90
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by other ants and by touching other ants to identify their caste. It is this inter-organismal informa-91

tion exchange that enables the collective solution of complex tasks. Our experiments consist of a92

dozenworker ants from the same colony that are anesthetized (using CO2) and then brought into a93

confining corral made out of agarose flanked between two hard plastic sheets, without visible light94

to mimic their natural environment in a nest; infrared light was used to monitor the experiment95

using video (see Figure 1(a)). We used a ring-like confinement made of agarose gel, with a height96

of 10 mm, an inner radius of 35 mm and outer radius of 55 mm, making the ring 20 mm thick. We97

performed a total of 7 sets of experiments with 4 experiments with a collective of 12 majors ants98

and 3 sets of experiments with a mixture of 4 major, 4 media and 4 minor ants. Once the ants99

regain activity (due to the introduction of O2), they stay still for a while before moving. Observa-100

tions show that they first exhibit wall-following followed by one of the ants initiating an exploratory101

excavation at a random location along the corral (ref Figure 2). After an initial exploratory phase102

the ants switch to an exploitative strategy in which they excavate a tunnel at a specific location and103

eventually breakt hrough the corral (see the sequence in Figure 1(b)).104

We can quantify this transition from rotationally isotropic exploration to localized excavation by105

considering either the behavior of individual ants or their effective density %a(r, �, t) as a function of106

the polar coordinates (r, �) and time. We choose to use an effective coarse-grained density for two107

reasons: it is a more natural variable in the limit of large populations that vary in space and time,108

and is also amenable to building effective theories to which experiments can be compared. The109

ant density is obtained by averaging the position of the ants over a time window larger than the110

time taken for them to perform one cycle of excavation at the boundary to dropping debris in the111

bulk (see sec. 1 for further details). Over time, the density becomes localized at a particular angle112

and location along the corral where large-scale excavation eventually leads to excavation out of113

the corral (see Video 3, Figure 2 and SI Figure 1 for the coarse-grained spatio-temporal evolution114

of the ant density, obtained by this averaging procedure). Simultaneously, we see a signature of115

collective excavation in an increase of the volume of excavated material, as shown in Figure 1(c)116

(see also (Toffinet al., 2009)). Averaging the density over radial positions, in Figure 1(d)we show the117

orientation distribution of the ant density a
�(�, t) = ∫ %a(r, �, t)dr is initially isotropic, and gradually118

starts to localize at a particular (arbitrary) value of the angle as time increases.119

Averaging the density over the localized region, in Figure 1(e)we show the radial distribution of120

the ant density a
r (r, t) = ∫ %a(r, �, t)S(�)d� (where S(�) is a kernel around the excavation site) that121

is initially uniform, and gradually propagates inside the boundary of the corral as time increases.122

Consistent with localization and concomitant excavation (Figure 1(f ) inset, SI Figure 2(c)), we see123

that the Fourier amplitudes of multiple modes compete with each other initially before an elliptic124

mode (corresponding to a strongly localized state) is amplified as excavation progresses (shown in125

Figure 1(f ), SI Figure 2(b)). All together, our quantitative observations show that an initially isotropic126

and homogeneous distribution of ants in the corral induces exploration of multiple potential tun-127

neling paths that transitions into the exploitative excavation of one specific location that eventually128

leads to an excavation route.129

Model of cooperative excavation130

In order to understand the dynamics of this cooperative excavation we model the ants using dis-
crete agents that mimic the microscopic behaviors of ants and also obtain a coarse-grained field
model for their evolution by averaging over the local actions. In the 2-dimensional agent-based
model each ant is represented as a circular disk of radius awith center position rj(t) and orientation
p̂j(t) where j = 1⋯ n, n being the number of ants in the domain (see Figure 3(a). We approximate
the confining corral in the experiments using discrete boundary elements which the agents can
pick and place in the interior of the domain (see Figure 3(b)). The agents engage in exploration
within the corral in the absence of external gradients, consistent with observations (Trible et al.,
2017) and their motion is rectified either by the presence of pheromone gradients or reinforcing
antennating signals (Hölldobler et al., 1990; Reinhard and Srinivasan, 2009; Waters and Bassler,
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Figure 3. Agent-based simulation (a) Schematic of the agents in our simulation captured by their position r(t) and orientation p̂(t)moving atspeed vo. These agents generate an antennating field c(x, t) at a constant rate k+ which decays at a rate k−. (b) Progression of cooperativeexcavation of the corral by 5 agents as they pick elements from the boundary and drop them in the interior (see sec. Table 1 for parameters).Color bar shows the magnitude of antennating field and it varies between 0-130. (c) Snapshot of the dynamics at the end of simulationscorresponding to Tstop = 266 for the number of agents n = 3, 13, 100. We see that agents can go from excavating successfully to being trapped intheir own communication field. (d) Box plot showing the time taken to excavate out of the corral T ∕ts (non-dimensionalized using ts - time takenfor an agent to travel the entire domain) as a function of the number of agents n in the corral when Tstop = 266. For very small and very largenumber of agents the collective does not excavate out as the median T ∕ts = Tstop and they escape fastest for n = 8.

2005; Gordon et al., 1993; Hillen and Painter, 2009; Toffin et al., 2009). This is because commu-
nication between ants is mediated either via antennation and/or pheromones which act as two
different modes of information transfer. The former involves information moving with the ants
and the latter leads to changes in the fixed environment. However, when ants move slowly rel-
ative to the time for the decay of the memory associated with antennation with other ants, the
dynamics of both these processes is similar. Then the signals laid down (or transported) by ants in-
creases locally at a rate proportional to their density (Gordon, 2021), and is subject to degradation
and diffusion slowly. Accounting for these effects, we arrive at the following dynamical equations
for the evolution of rj(t), �j(t), c(x, t):

ṙj(t) = vop̂(t)
⏟⏟⏟

Self-propulsion
, (1)

�̇j = G∇⟂c
⏟⏟⏟

Antennation feedback
+ �j(t)
⏟⏟⏟
Exploration

, (2)

)tc = Dc∇2c
⏟⏟⏟
Diffusion

+ k+
n
∑

j=1
(rj(t); a)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Production

− k−c
⏟⏟⏟
Decay

. (3)

Here the orientation of the agents is given by p̂j = (cos �j , sin �j) with �j being the heading an-131

gle, vo the characteristic speed of the agents, �j is a Gaussian white noise with correlation function132

⟨�kj (t)�
l
j(t

′) = 2Da�k,l�(t − t′)⟩. Further the agents produce antennating field at a rate k+ which de-133

cays at a rate k−. Here the production of the antennating field is captured by a square function134

(rj , a) = {1 if |x−rj|2−a2 ≤ 0; 0 if |x−rj|2−a2 > 0}. We assume that the gradient in the antennating135

field along the local normal determines the rotation of the agents by amagnitudeG is the rotational136

gain. In order for the agents to initiate the excavation process, they can pick the elements from137
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Figure 4. Cooperation via organism-environment-organism interaction (a) Schematic of the model showing the interaction between thedifferent spatio-temporal fields required to capture cooperative excavation of ants: ant density, %a(x, t); concentration of antennating field, c(x, t)capturing inter-ant communication; density of corral, %s(x, t) representing the soft corral which the ants excavate. We capture the dynamics ofexcavation by ants close to the excavation site using the 1-dimensional version of Equation 4-Equation 5 . (b, c) Temporal progression of thecorral density, antennating field and the ant density showing successful excavation for high cooperation captured using the non-dimensionalnumber, C (representing non-dimensional strength of cooperation amongst ants) and faster excavation, captured using E. For reducedcooperation ants’ diffusion dominates and only partial tunnels are formed (see SI 2 for details). T here is the time for excavating out of thecorral. The agent density is a gaussian function centered around x = 0.5.

the boundary and drop them in the interior of the corral only when the local concentration of the138

antennating field is beyond a critical threshold c∗ ensuring that the agents start performing a task139

only after enough number of interactions among themselves, consistent with observations (Gor-140

don, 2021; Gordon et al., 1993). Figure 3(b) shows snapshots of simulation following the dynamics141

of Equation 1-Equation 3where the agents excavate successfully out of the corral when we ensure142

that the gradient following behavior is strong (see SI 2 for details). Given such a dynamics, we ex-143

pect the time taken to excavate out of the corral is going to be a function of the number of agents.144

In order to characterize the behavior we vary the number of agents from n = 1 − 100 and find that145

for very small or large number of agents in the corral, the agents do not excavate out during the146

time of simulations, Tstop (see Figure 3(c, d)), seen as saturation in the excavation time T ∕ts.147

In the agent based simulations we can encode the behavior of ants with all its details such as
prescribing the sequence of actions taken during the execution of pick and place task, the path
taken during the dropping of debris in the interior of the coral, changes in orientation after inter-
ant interaction and so on. It also helps us get an estimate time of excavation given these behavioral
rules. Further, as we have seen, we can study the effect of number of agents on the time of excava-
tion. However for each of these actions there is a parameter associated with it in the simulations
which results in a large dimensional phase-space. These simulations, moreover, are computation-
ally expensive as one needs to couple the antennating field equations (which is a partial differ-
ential equation) with discrete agents and also evaluate the mutual interaction of all the agents in
the corral. In order to gain insights into the relevant parameters that describe our observations
in the agent-based model and also the parameters that govern the macroscopic dynamics of the
collective, we develop a theoretical framework that coarse-grains over the fast times and short
length scale actions of the agents, i.e. considers spatial variations over scales much larger than
a “mean-free path” and “collision time” associated with agent-agent interactions. A formal coarse-
graining of the actions from the discrete agent-based simulations to the continuum is often difficult
and one resorts to closure models to account for the effects of fluctuations accurately. Our effec-
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tive theory attempts to couple three slowly-varying spatio-temporal fields: the ant density %a(x, t),a communication field c(x, t) representing processes such as antennation and pheromone-based
communication that the ants use to communicate with each other, and the corral density %s(x, t),shown schematically in Figure 4(a) to explain our observations in terms of a small number of ef-
fective measurable parameters. In the continuum picture, the agents’ randommotion is captured
using diffusion of the density while the rectified motion due to pheromone gradients is captured
through chemotaxis, in addition to being self-propelled with a velocity ua that is related to the lo-
cal environment. Finally, motivated by observations of antennation (Gordon, 1999; Pagliara et al.,
2018), we assume that when the ants are stimulated by the presence of the corral past a threshold
of antennation, c∗ they start excavating. The rate of excavation is assumed to be proportional to
the difference in the pheromone concentration relative to the threshold value i.e. ∼ (c − c∗) (see SI
sec. 1 further details). Accounting for these effects, we arrive at the following dynamical equations
for the evolution of %a(x, t) and %s(x, t):

)t%a = − ∇ ⋅ (ua%a)
⏟⏞⏞⏟⏞⏞⏟
Self-propulsiveadvection

+ ∇ ⋅ ( Da∇%a
⏟⏟⏟

Diffusive flux
− �%a∇c

⏟⏟⏟
Tactile feedback

), (4)

)t%s = − ks%s{ Θ (c − c∗)
⏟⏟⏟
Antennatingfield threshold

} × { Θ (%a − %∗a)
⏟⏞⏟⏞⏟
Ant densitythreshold

}. (5)

Here, in the first equation, the ant advection velocity is assumed to have the form ua = vo(1 −148

%s∕%o)p̂ where vo is the characteristic speed of the agents, and p̂ is a unit vector pointing along the149

radial (�) direction, and the term (1 − %s∕%o) reflects the fact that excavating ants are slowed down150

by their labor; Da is the diffusivity of ants, � is a chemotactic gain associated with the strength of151

antennating-field-following behavior that captures the intensity of the tactile feedback that ants152

experience (related to the rotational G in the agen-based model); k+, k− are the rate of production153

and decay of the antennating/pheromone field, andDc is its diffusivity (see SI sec. ); ks is the rate of154

excavation of the corral and %∗a, c∗ are the threshold concentration of ant density and antennating155

field required to initiate excavation. We assume that the behavioral switches have simple switch-156

like responses modeled here via the Heaviside function Θ(x) (or its regularization via hyperbolic157

or Hill functions). It is useful to note that in the absence of excavation dynamics, our framework158

reduces to the well known Keller-Segel model for chemotaxis (see (Hillen and Painter, 2009) for159

a recent review) (also detailed in SI sec. 2). The coupling of ant behavior to the dynamics of ex-160

cavation introduces the all-important notion of functional collective behavior linking active agents,161

communication channels (the antennating and pheromone fields) and a dynamic, erodible corral162

that characterizes function in terms of progress towards task completion.163

Model parametrization and description164

The evolution of the ant density in Equation 4 is a combination of three dynamical processes: ant
migration, their diffusion and biased motion due to feedback from contact with other ants (cap-
tured using the antennating field). There are three time-scales associated with these three pro-
cesses: ant density diffusion time-scale �a ∼ l2∕Da, ant collective migration time-scale �v ∼ l∕vo andthe time-scale associated with taxis due to antennating field gradient �x ∼ l2∕�co, where l is a char-acteristic length-scale which is either the width of the corral to be tunneled L (which is assumed
to be of same order as width of initial ant density profile la) or the length-scale due to antennatingfield diffusion and decay, l ∼ (Dc∕k−)1∕2 or the length-scale due to the advection of ant density anddiffusion, l ∼ Da∕vo. The antennating field in Equation 3 on the other hand is governed by three
processes, which are the generation of antennating field at ant locations, decay and diffusion in
the intensity representing loss in memory as well as errors in their measurements. We have three
more time-scales due to these processes: antennating field production time-scale �+ ∼ co∕(k+%o),diffusion time-scale �c ∼ l2∕Dc , and decay time-scale �− ∼ 1∕k−. Lastly, the corral is excavated as a
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Figure 5. Two dimensional simulations showing the evolution of the ant density %a, antennating field c andthe corral density %s by evolving Equation 4-Equation 5, capturing successful tunneling for non-dimensionalnumbers C = 0.8,E = 1.44 and time of simulation T = 20.0. The list of dimensional parameters used in thesimulation are indicated in the SI Figure 1(f ). Radius of the outer boundary, Ro is 5 non-dimensional unitsand the inner boundary is Ri = 2.5 (see SI 2 for details). Color bar shows the magnitude of different variablesand they vary between 0-1.

function of time with a characteristic time-scale �s ∼ 1∕ks as in Equation 5. Here %o is the averagedensity of the ants defined by %o = ∫ %adx∕L where L is the domain size. This is a natural scale of
the ant density as Equation 4 is in conservative form and the net density of the ants is preserved
over the evolution. The dynamics has the threshold c∗ as the only intrinsic intensity scale of the
antennating field. However this is not a natural scale for the antennating field as the threshold
cannot be tuned but is often fixed in the system. Instead we use the maximum antennating field
produced during the dynamics to be co. The list of time-scales and length-scales associated with
the different processes in the model are in Table 2. With seven time-scales the parameter space
of the model is quite large. We thus look at various limits in this parametric space to glean insights
into the mechanisms of task execution. Although our model has a number of different time-
scales parameters (see SI sec. 2 for a list along with their ranges), two non-dimensional numbers
arising out of these different time-scales are qualitatively important in capturing the etho-space of
collective excavation: (i) the scaled cooperation parameter defined as C = �a∕�x = �co∕Da whichdetermines the relative strength of antennation (gradient-following) to ant diffusion with co beingthe maximum amplitude of the antennating field, (ii) the scaled excavation rate, E = �v∕�s = ksl∕vo.Here, l∕vo is the characteristic time-scale of ant motion, with l ∼ min[(Dc∕k−)1∕2, la], where la is theant size (see SI sec. 2 for details). In addition, we have the ratio of ant motion time-scale vs the dif-
fusive time-scale, V = �x∕�a = vol∕Da. The three non-dimensional numbers C,E,V arise out of the
dynamics of the ant density field in Equation 4 and the corral in Equation 5. Two additional non-
dimensional numbers follow from the dynamics of the antennating field in Equation 3: comparing
the rate of production of pheromone with diffusion or decay, we write k̂± = �−∕�+ = k+%o∕(k−co)and Dc = �−∕�c = Dc∕(l2k−). Then the complete set of non-dimensional numbers that capture the
dynamics of the ant collective is given by

C =
�co
Da

, E =
ksl
vo
, V =

vol
Da

, k̂± =
k+%o
k−co

, Dc =
Dc

l2k−
.
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In terms of these parameters, the dynamics of the ant density, the antennating field and the corral
density can be written in non-dimensional form as

)t%a + ∇ ⋅ [(C∇c + V(1 − %s))%a] = ∇2%a, (6)
)tc = Dc∇2c + k̂±%a − c, (7)
)t%s = −

1
4
E%s(1 + tanh[�c(c − c∗)])×

(1 + tanh[�c(%a − %∗a)]). (8)
To complete the formulation of our model, we also need to specify some initial conditions for the165

three fields and boundary conditions for the ant density, the pheromone density, and the location166

of the corral boundary which are detailed in the sec. 2.167

Results168

Linear analysis169

Before we can look at the different limits of the phase-space defined by the non-dimensional num-170

bers, we show that the excavation process is an instability which is triggered by the scaled exca-171

vation parameter E in the system. We can see that the homogeneous state %ssa = %∗a, c
ss = c∗ =172

k+%o∕k−, %sss = 1 is a steady state of the above equations. This steady state represents a special173

case where the density of the ants is close to the critical threshold and so is the strength of the174

antennating field. Perturbation analysis helps us determine the mode of instability close to this175

threshold where the ants have accumulated and generated an effective antennating field.176

In order to understand the short time dynamics close to this steady state, we introduce a177

perturbation around this configuration and expand it using a plane wave ansatz. In 1D this be-178

comes: {%a(x, t) − %ssa , c(x, t) − css, %sss − %s(x, t)} = {%̃a(k), c̃(k), %̃s(k)} exp(ikx + Ωt) where we assume179

that ||%̃a||, ||c̃(k)||, ||%̃s(k)||≪ 1. Then the linearized equations for ant density in Equation 6 reads as:180

(Ω+k2)%̃a + ikV%̃s%o = k2Cc̃ and the antennating field in Equation 7 becomes: c̃ = k̂±%̃a∕(Ω+1+Dck2),181

and lastly the corral density in Equation 8 becomesΩ%̃s = −E%̃s∕2. From this we see that the growth182

rate Ω = −E∕2, is independent of all other parameters in the system. Thus tunneling begins when183

E > 0, once the ants have created a sufficiently large spatially diffuse antennating field, and the184

corral excavation rate determines the dynamics of the instability. To understand the dynamics of185

excavation of the corral and the different phases of collective behavior, we now explore the role186

of the other non-dimensional numbers.187

Limits of phase-space188

In this section we discuss the different limits of the phase-space defined by the non-dimensional189

numbers {C,E,V, k̂±,Dc} and the thresholds %∗a, c∗. We use non-dimensional numbers to describe190

the region in phase-space but revert to dimensional form to keep the analysismechanistically trans-191

parent.192

Small thresholds, when %∗ ≪ %o and c∗ ≪ co193

When %∗a ≪ %o and c∗ ≪ co, partial tunneling canbe achieved even if we startwith an inhomogeneous194

ant density %a, independent of the pheromone dynamics and is thus very inefficient. Depending on195

whether the ants can tunnel fast or slow relative to their motion, i.e. depending on the value of the196

ratio �s∕�v, the ants can excavate through the corral completely (�v∕�s ≪ 1) or partially (�v∕�s ≤ 1)197

(ref Table 2).198

On the other hand if the ants are moving randomly, i.e. in the diffusion-dominated regime,199

then they can still tunnel through the corral if �c ∼ �s and achieve partial tunneling if �c ≲ �s. In non-200

dimensional terms this translates to V ∼ (1),C≪ 1 or V,C≪ 1 for the ant density and E ∼ (1) for201

the corral evolution. It is worth mentioning that we use the width of the corral, L as the relevant202
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length-scale to define these non-dimensional numbers. SI Figure 1(a) has simulations showing this203

behavior both in the tunneling and the partial tunneling phase.204

Cooperation dominated regimes when C ≫ 1 and E, V → 0205

For efficient excavation, the ants need to work collectively, i.e. be localized and excavate fast. Lo-206

calization in space leads to cooperation via feedback from the antennating field (see Figure 4(b)) -207

this keeps the collective together and prevents it from diffusing away. For successful excavation,208

ants also need to migrate towards the corral and tunnel through it, so that their effective speed vo209

needs to be non-zero. We first look at the dynamics of the ant density and the antennating field in210

the absence of migration i.e. V → 0 (we also neglect the corral dynamics for now). There are three211

regimes arising out of the antennating field dynamics which we now consider separately:212

• Diffusion dominated regime: When the generated antennating field rapidly diffuses away,
i.e. Dc ∼ k̂± ≫ 1, then the antennating field and the ant density evolve as

−Dc∇2c = k+%a, (9)
)t%a + �∇ ⋅ (%a∇c) = Da∇2%a. (10)

In this limit, we obtain thewell known Keller-Segelmodel for bacterial aggregation (Hillen and213

Painter, 2009). Balancing the effects of diffusion of the antennating field with the production214

term, we obtain a length-scale over which gradients in antennating field is felt which is l ∼215

(Dcco∕k+%o)1∕2. Accumulation in ant density can happen when the ants can sense this gradient216

which corresponds to largeC. On the other hand for smallC, the ant density diffuses out. The217

diffusion of the antennating field drives migration of ants due to detection of gradients thus218

resulting in generation of more antennating field in the new location. This process continues219

to happen perpetually resulting in piling up of ant density.220

• Decay dominated regime: When the generated antennating field all decays fast we are in
the limit of k̂± ∼ (1),Dc ≪ 1. The dynamics of the antennating field reduces to c ≈ (k+∕k−)%a.The ant density evolution then becomes,

)t%a +
�k+
k−

∇ ⋅ (%a∇%a) = Da∇2%a. (11)
When the chemocactic coefficient � is large, i.e. in dimensionless terms C≫ 1, the ant collec-221

tive undergoes jamming. This can be seenmost easily by linearizing the equation Equation 11222

about a uniform ant density %o and recognizing that this can lead to an effective negative dif-223

fusivity and thus the onset of clustering and a spatio-temporal focusing of the ant density;224

we leave a detailed analysis of the characteristics of this for future study.225

• Competing effects of diffusion and decay: Comparing the diffusion of the antennating226

field and its decay, i.e. letting Dc ∼ (1), yields a length scale l ∼ (Dc∕k−)1∕2 which defines227

the zone of influence of the field. We use this length scale to arrive at the non-dimensional228

tunneling rate indicated in Figure 8. Then, in the limit when the antennating field generation229

rate is large, i.e. k̂± ≫ 1, the field generates a gradient that drives collective ant motion and230

excavation.231

All together, our analysis shows that the dynamics of the antennating field controls the aggregation232

or diffusion of ant density. But this is alone is not enough; for efficient excavation, especially when233

the activation thresholds for excavation and localization %∗a, c∗ are large, we need both cooperation234

and finite velocity of migration so that the ant collective can eventually tunnel through. Other235

regimes associated with partial tunneling, jamming or diffusion arise as the parameters are varied,236

as listed in Table 3.237

When accounting for the effects of excavation andmigration of the ants i.e. E, V ≠ 0, by solving252

the governing Equation 4-Equation 5 in a one-dimensional setting (ref SI sec. 2) captures the two253

limits of the excavation behavior seen in experiments; For large excavation rate E and cooperation254
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Box 1. Ant behavior→Model→ Robot behavior238239

Ants inside the corral move around, communicating with each other using their antennaebefore they cooperatively excavate the agarose corral. Though the detailed spatio-temporaldynamics of each ant’s behavior is different at the microscopic level, we see that the coopera-tion between the ants results in a persistent density front (see Figure 1(d, e) and Figure 2) thatexcavates the substrate. In the theoretical description of the collective’s dynamics, the rele-vant behaviors are encoded throughmutual interaction between the ants (via the antennatingfield) and the substrate. Such a description also inspires the robotic mimics that capture theant collective’s average behavior. We list below the comparison between relevant behaviorsin ants and their analogous encoding in the theoretical model as well as in the robots.

240

241

242

243

244

245

246

247

248

Ants Theoretical model Robots
Discrete ants Ant density, %a(x, t) Discrete robotsAntennae communication Communication field, c(x, t) Photormone fieldAgarose corral Substrate density, %s(x, t) Boundary elements
Motility Self-propulsive advection, ua Mobile agentsExploratory behavior Density diffusion, Da∇%a Random walkTactile feedback Antennating field taxis, �%a∇c PhototaxisBiting behavior Excavation rate, ks Collection and deposition
Neural control Dynamics of ant density Behavioral rules

249

Box 1 Table 1. Comparison of relevant variables, basic behaviors, and behavioral coordination betweenant experiments, theoretical model and robotic implementation.250

251

parameter, C, we see coordinated excavation (shown in Figure 4(b)), while decreasing the cooper-255

ation parameter leads to disorganized excavation (shown in Figure 4(c)) (see SI Figure 1). While256

a direct comparison with the behavior of ants is not easy owing to the difficulty of inferring the257

dynamics of information transfer through antennation, the minimal assumptions we have made258

about the antennating field dynamics suffice to capture the macroscopic behavior of the collective.259

All together, our agent-based model and the phase-field model shows the emergence of cooper-260

ativity without the need for a plan, optimization principle, or an internal representations of the261

world, but via the environmentally-mediated communication between agents (Mataric, 1993) that262

leads to task completion.263

Robotic collective excavation264

Although the collective behavior of the ants is qualitatively captured by our simplified theoretical265

model, we can ask if the coarse-grained averaging over microscopic dynamics of the communica-266

tion field might affect the emergence of the task in experiments. It is thus unclear if the simplifying267

assumptions underlying the model are sufficiently general, since we are unable to control the mi-268

croscopic behaviors in the system. To go beyond our ability to merely explain the observations of269

ant behavior using our theoretical framework, we asked if we might be able to synthesize or recre-270

ate the behavior in robotic mimics, and probe a larger range of the parameters and phase-space271

spanned by C,E, than our experiments allowed us to.272

For this, we turn to a robotic platform to synthesize collective functional behaviors that arise273

from simple behavioral rules underlying individual programmable robots. Our custom designed274

robot ants (RAnts) are inspired by many earlier attempts to create artificial agents that are mobile275

and follow simple rules (Braitenberg, 1986; Brooks, 1991; Simon, 1996), can respond to virtual276

pheromone fields (Sugawara et al., 2004; Garnier et al., 2007) and are capable of robotic exca-277

vation (Aguilar et al., 2018). Our autonomous wheeled robots can exhibit emergent embodied278

behavior (Bricard et al., 2013), and are flexible enough to allow for a range of stigmergic interac-279
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Figure 6. Emergent cooperative excavation dynamics in robotic ants (a) Robot Ant (RAnt) set-up. A mobile RAnt is placed in an arena 50cmin diameter surrounded by three layers of cylindrical boundary elements totalling 200 elements. The outermost layer is prevented from beingpushed out of the arena by a circular ring. A scalar concentration field (photormone field) is projected onto a plane whose intensity can bemeasured by a RAnt. The position of each RAnt is tracked using a webcam. Each RAnt can pick up and drop the discrete boundary elementsusing a retractable magnet. (b) Series of snapshots at different times of the excavation process for a cooperation parameter C = 1. (c) Flowchartof the RAnt programming. A base locomotion speed vb is stored internally and the rate of change Ω of the heading is a function of thecooperation parameter C, the photormone concentration c, and a stochastic processW (Brownian motion). A photormone threshold c∗determines whether an object is grasped (with probability E) after it is detected by the distance sensor. (d) Orientation distribution of the RAntdensity r
�(�, t) as a function of the azimuthal position �. �b is the orientation of the excavated tunnel. The density is plotted for different times.

(e) Radial distribution of the RAnt density r
r (r, t) within a sector of �∕2 centered around the position of the excavated tunnel as a function ofdistance from the center of the arena r. The density is plotted for the same times as in (d). (f ) Confinement area A(t) as a function of time,normalized by initial circular confinement with radius Ro for different cooperation parameter C. (g) Normalized excavation time T as a functionof cooperation parameter C, averaged over 5 experiments per cooperation parameter. Every experiment was run until the first RAnt excavatedout or the experiment duration exceeded 15 minutes.

tions with the environment (Werfel et al., 2014; Petersen et al., 2019). This is made possible by280

having each RAnt equipped with an infrared distance sensor to detect obstacles and other RAnts,281

a retractable magnet that can pick up and drop wall elements with a ferromagnetic ring (shown282

in Figure 6(a)), and the ability to measure a virtual pheromone field generated by a light projected283

(from below) onto the surface of a transparent arena they operate in (see Figure 6(a, b)) (Theraulaz284

and Bonabeau, 1995; Sugawara et al., 2004; Garnier et al., 2007;Wang et al., 2021). The intensity285

of this “photormone” field follows the antennating field Equation 3 and thus follows the dynam-286

ics of a field that is linked to the the locations of the RAnts and diffuses and decays away from287

it. The photormone field is realized by a projected luminous field on the arena, which the robots288

can sense. This allows us to use a local form of Equation 4-Equation 5 to define a robot’s behavior289

in terms of an excavation rate E, a cooperation parameter C, and a threshold concentration for290

tunneling c∗. This is encoded in the behavior-based rules (see Figure 6(c) and SI sec. 3 for more291

details), that induces the following behavior: (i) follow gradient of projected photormone field; (ii)292

avoid obstacles and other RAnts at higher photormone locations; (iii) pick up obstacles from high293

photormone locations and drop them at low concentration levels. Since the robots have no sym-294

bolic representation of the different signals they sense (e.g. they cannot distinguish another RAnt295
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Figure 7. Averaged RAnt dynamics Ultimate distribution of boundary elements and averaged RAnt densityfield (in units of #/cm2) over the full duration of experiments for different trials.

from a wall element, since both merely produce a bump in the sensor signal), the observed behav-296

ior emerges from this simple sequence by depending on the current state of the environment and297

the robot.298

Varying the parameter C ∈ [0, 1] allows us to tune the individual behavior from randommotion299

(C = 0) to tracking the photormone gradient (C = 1). Varying the non-dimensional excavation rate E300

changes the frequency at which the robots execute pick-and-drop behavior with detected objects,301

and serves tomimic what arises in ants as a function of theirmorphology and caste (see SI sec. 1 for302

more details). For a specific value of these parameters, we followed the collective behavior of RAnts303

by averaging their position over several pick-and-drop timescales to obtain the RAnt density field304

%r(r, �, t), just as for ants. When all the RAnts are programmed to have a cooperation parameterC =305

1, RAnts initially explore the region without picking the boundary element until the photormone306

concentration c ∼ c∗, which happens once a particular location has enough visits by other RAnts. As307

for ants, we calculate the radially averaged RAnt density  r
�(�, t) = ∫ %r(r, �, t)dr; Figure 6(d) shows308

how RAnt density localizes at a (random) value of the azimuthal angle. As excavation progresses,309

the RAnt density propagates radially outwards as a density front just as in ants, shown in Figure 6(e)310

in terms of the quantity  r
r (r, t) = ∫ %r(r, �, t)d� (also shown in Figure 7 for different trails when311

C = 1). Concommitantly, as excavation progresses, the corral area increases (Toffin et al., 2009);312

interestingly the scaled corral area A(t)∕�R20 is independent of the cooperation parameter C as313

shown in Figure 6(f ) (all RAnts were programmed to have the same excavation rate).314

However, cooperation does change the time for excavation; in Figure 6(g)we show the average315

excavation time (scaled by the characteristic time it takes for a rant to traverse the arena) and316

see that T ∕ts decreases with an increase in the cooperation parameter C. RAnts excavated out317

every time for C > 0.5, but are unable to complete excavation for low cooperation parameters318

(within a 15 minute time window). Our results show that it is the localized collective excavation319

of RAnts mediated by photormone-induced cooperation that is responsible for efficient tunneling320

and excavation; for low values of the cooperation parameter, tunneling is defocused and global,321

and thus not as effective (see SI Figure 2). When E → 0 (vanishing probability for a successful322

pick up) but strong cooperation (see Figure 8 and SI sec. for theoretical predictions), the RAnts get323

jammed because they follow the photormone field they generate but are unable to tunnel through324

the boundary constriction. On the other hand, when E is small and C is small, the agents do not325

cooperate and their diffusive behavior prevents successful tunneling. The range of strategies can326

be visualized in a two-dimensional phase space spanned by the variables E andC shown in Figure 8.327

Low values of C and E lead to diffusive (and non-functional) behavior, while high values of these328

variables lead to coordinated excavation, with the other two quadrants corresponding to jammed329

states (large C, small E) and partially tunneled states (large E, small C). Interestingly, these states330

are also observed as transients in our ant experiments, for example in the initially diffused state331

that is characterized by random motion inside the corral, when transiently jammed states and332
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Figure 8. Phases of cooperation Phase-diagram of cooperative task execution with different phases seen inants and RAnts. In the robotic experiments we tune the Cooperation parameter C and the Excavation rate Ewhile in the ant experiments we change the caste mixture. In the ant experiments we see the jammed anddiffused phases transiently before the ants relax to cooperative excavation.

partial tunneling occur (see Video3).333

Discussion334

Our analysis of collective behavior in a functional task, excavation, attempts to use observations335

of ants to abstract the general features that are amenable to a theoretical treatment of the fields336

and rules that are also sufficient to explain them, and eventually to create a robotic system that337

recreates these behaviors. Simple dynamical models at the level of individual agents and an effec-338

tive continuum theory explain our observations and provide a minimal phase diagram that shows339

how the transition from an individually exploratory strategy to an exploitative cooperative solution340

is mediated by the local chemical and mechanical environment. Our study suggested algorithms341

that we then deployed in an engineered system of a swarm of robots that individually follow amin-342

imal set of behavioral rules that mould the environment and are modulated by it. A critical aspect343

of our framework is the role of a malleable environment that serves both as a spatial memory as344

well as a computational platform (using the spatio-temporal photormone field and the corral). Our345

simulations of agent-basedmodels and robotic experiments further suggest that a coarse-grained346

framework linking behavior, communication and a modulated environment is relatively robust to347

failure of and stochasticity in the behavior of individual agents (i.e. variations in initial conditions348

and number of agents), in the communication channels or in the corral geometry, in contrast to349

many engineering approaches that aim to control all agents and optimize costs.350

Different strategies such as collective excavation, jamming and diffusion then arise as a func-351

tion of the relative strength of the cooperation (representing the ability to follow gradients and352

detect threshold values) and excavation parameters (representing the ability to move material),353

as manifest in a phase diagram, and the emergence of cooperation arises due to the relatively354

slow decay of an environmental signal (the pheromone/antennating/photormone field), coupled355

to a threshold excavation rate. Our approach to functional and purposeful collective behavior356

links many simple brains and bodies with a dynamic environment that modulates behavior, and is357

changed by it. Since the ability to solve complex eco-physiological problems such as collective exca-358

vation is directly correlatedwith a selective advantage in an evolutionary setting, perhaps collective359
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behavior must always be studied in a functional context.360
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Appendix 1447

Videos448

We have 4 supplementary videos which can be viewed using this link.449

1. Video 1 - Ant experiments: (i) Single ant: We confined 1 ant (major, media and minor
individually) and capture their dynamics to see if they are capable of tunneling on their
own; (ii)Multiple castes assemblage: We confined 12 ants, 4 for each of major, minor
andmedia castes, and capture the dynamics of excavation as they tunnel through the
boundary; (iii)Major ant collective excavation: We confined 12major ants and capture
the dynamics of excavation as they tunnel through the boundary.

450

451

452

453

454

455

2. Video 2 - Successful tunneling in RAnts: (i) Dynamics of excavation by RAnts as they
cooperatively tunnel through the corral for C = 1 and without cooperation, C = 0;
(ii) Jammed phase: When the pick-and-place in RAnts is deactivated (corresponding
to E = 0), they get jammed for C = 1; Diffused phase: When the pick-and-place in
RAnts is deactivated and the RAnts do not follow the antennating field (corresponding
to C = 0), they diffuse around.

456

457

458

459

460

461

3. Video 3 - Dynamics of excavation from agent-based simulation for different number
of agents (n = 1, 5, 10, 22, 100) in the corral for parameters in tab. 1. We see successful
escape as well as trapped dynamics as highlighted in Figure 3(d).

462

463

464

4. Video 4 - Summary video showing the results from ant experiments, theoretical model
and robot experiments.

465

466

Ant experiments467

Experimental setup - handling ants468

We collected two queen-right mature colonies of Camponotus pennsylvanicus, established
in logs of fallen trees, from the Middlesex Fells Reserve (42.45◦N, 71.11◦W) in August 2019.
Each mature colony consists of three morphologically distinct castes of worker ants: major,
media and minor, with an average body length of 7mm, 5mm for media, and 4mm respec-
tively. We placed the collected wooden logs housing those colonies in two separate plastic
“home" boxes. We coated the inner wall of each home box with ant-slip Fluon to prevent
the ants from escaping the home box. Each home box was connected to a foraging box by
a tube through which ants travelled to and fro. We kept the whole set up in the laboratory
with a 12 hour light-dark cycle, 30◦C temperature and 50-70% relative humidity. Before we
moved to the next phase of the experiment, i.e. the data collection, wewaited for the ants to
resume foraging and excavation of woods (for expanding their galleries) inside their home
wooden log; this took 3-5 days after the relocation.

469

470

471

472

473

474

475

476

477

478

479

480
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481

Appendix 1 Figure 1. Dynamics of ant density field, %a(x, t) (in units of #/mm2) obtained by averagingthe ant location and the boundary shape R(�) when 4 ants each of major, media and minor types areconfined inside the agar ring for different trials.
482

483

484485

About 10 minutes prior to the experiments, we collected ants engaged in wood excavation
from the surface of the nest log. We used insect aspirators for collecting the ants. Once
we collected all ants needed for the experiment, we subjected the ants to Carbon dioxide
anaesthesia for 1 minute. Next, we placed the anaesthetised ants in the agarose well in
the experimental arena; we placed each ant at least 1 cm away from any other ant. Ants
regained their activity in the next 5-10 minutes.
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487

488

489

490

491

Experimental setup - confinement492

For the next phase of the experiment, we needed to confine the ants in an excavatable
enclosure. This is the corral that the ants need to bite through to free themselves. We
used a ring-like confinement made of agarose gel, with a height of 10 mm, an inner radius
of 35 mm and outer radius of 55 mm, making the ring 20 mm thick. To make a precise
shape of the ring repeatedly, we custom-built a casting mold made of acrylic plastic. We
started preparing for the Agar ring before we collected the ants. For making the ring, first,
we thoroughly mixed 3 gm of Agar powder in 100 ml of tap water. We then warmed the
solution in a microwave oven until the solution started bubbling and appeared clear. Next,
we poured the solution in the plastic mold, and kept it in 30◦C temperature for 25 minutes;
the agarose gel solidified and become opaque during this time. Once the agarose turned
solid, we placed the ring on top of plastic sheet in the arena. Next, we placed the ants inside
the ring and put a perti dish lid on top of the agarose ring. Thus, we confined the ants - with
a solid plastic floor and ceiling, and an excavatable agarose gel wall. A schematic of the
set-up is shown in Figure 1(b).
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506

Experimental setup - arena and video recording507

The arena consists of a piece of white 3 mm thick plastic sheet as the substratum, illumi-
nated with infrared back-light, and surrounded by a 1.5 cm high plastic wall coated with
Fluon ant-slip. We placed a Point Grey (FLIR) Grasshopper3 GS3-U3-41C6NIR camera, fitted
with a 65 mm macro lens, on top of the arena to capture the view of the whole ring. The
camera recorded the videos with 30 fps recording speed and 1024×1024 pixels resolution.
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509

510

511

512

18 of 32



Markerless tracking513

Leveraging an open source, deep-learning based pose estimator package SLEAP (Pereira
et al., 2020), we track 3 body parts in each ant - head, thorax, and abdomen (gaster). Sam-
ple results obtained from this tracking is shown in SI Figure 2(e) and in (f − ℎ) we quantify
the noise statistics of ant motion and its orientation using the tracking data. Ants initially
move randomly in the confinement and one of the ants starts the excavation process after
which several ants start excavating cooperatively at the same location. When the tunneling
happens, all the ants are orientated along the tunnel. We see this through the progres-
sion of the orientation distribution of ants (�, t) in SI Figure 2(j). To characterize the lo-
calization in ant orientation as the excavation proceeds, we use a von-Mises distribution
(the analog of a Gaussian distribution for a periodic variable, given by (�, t;�(t), K(t)) =
exp [K cos(� − �)]∕2�I0(K)) of the ants (where � is the mean local orientation associated with
location of tunnel along the boundary). In SI Figure 2(k), we see that over time, K(t) in-
creases, i.e. the variance decreases. During the excavation process, ants bite through the
corral, carry the debris from the excavation site and drop it in the interior of the confine-
ment. This happens over and over again until all the ants excavate out. We see this captured
in the oscillations of the location of ants as shown in SI Figure 2(i).
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Average dynamics530

We have a total of 7 sets of experiments with four sets of experiments with a collective of
12 majors ants and 3 sets of experiments with a mixture of 4 major, 4 media and 4 minor
ants. Using the recorded video of the ant excavation dynamics, we threshold the intensity
to extract only the ant boundary and average the ant dynamics over 250 secs. This gives us
a density field of ants representing the locations where the ants have been and the amount
of time they spend. We found in our experiments that each ant bites the corral, picks the
bitten piece and transports it into the interior of the confinement. This process takes ap-
proximately 60 secs (see SI Figure 2(i)) and we would like to average the ant dynamics over
several ‘turn over’ time-scales. We chose 250 secs and the obtained density field is shown
in SI Figure 2. We perform this averaging for the experiments with all major ants as well
as the mixture of different castes. In all the experiments, an ant density front propagates
through the corral as they excavate and gradually tunnel through.
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542

Boundary tracking543

From the recorded videos, we also track the locations in which the ants excavate for creat-
ing the tunnel. For that, we used a custom image processing Matlab script. First, we created
a mask superimposing on the area encircled by the inner ring of the corral; we colored the
mask with a shade different from the corral. When ants excavated the corral, the Matlab
script could detect the difference in the shade/color of the excavated area. Using this con-
trast, we track the continuously changing boundary.
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550

Appendix 1 Figure 2. (a, b) Shape of the boundary tunnel during the tunneling process and theapproximate representation of the shape using first 9 Fourier modes. (c) Evolution of the magnitudeof the first 9 Fourier modes of the boundary: R(�, t) = ∑

k R̂(k, t)eik�. (d) Evolution of boundarylocation, R(t) at different � values and the excavation rate. (g) Collage of boundary evolution showingtunnel formation in six experiments. (e) Location and orientation of the ants obtained from trackingthe gaster (orange) and heat (blue) of all the ants. (f ) K(t) is the von Mises parameter highlightingstrength of focus in ant orientation thorough a fit to the (�) obtained by a curve fit to thedistribution. (g) Image showing evolution of the boundary as the excavation process happens fordifferent experimental trials. (ℎ) Location of center of ants with orientation during the excavationprocess. (i) Average orientation distribution (�) of all the ants showing hints of localization which isevident when plotted over time. (j) Noise statistics of ant velocity along the body axis, v
||

and in thenormal direction, v⟂. Dashed lines again are Gaussian fit to the data. Ants have zero mean velocitynormal to its axis. (k) Noise statistics of orientation with peak close to 0 because of resting of the antswhich otherwise follows a Gaussian which is the dashed line.
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This is shown as a super-imposed image on the right side of SI Figure 2 where R(�, t) is the
radius of the ring as a function of the polar angle �. Tunnels are locations along �which see
increase in the radius. We quantify this by plotting R(t) in SI Figure 2(d). We also quantify
the number of tunnels by decomposing the shape into different Fourier modes as detailed
in the caption.
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Appendix 2571

Agent-based model of cooperative task execution572

The results shown in figure 3 are based on a numerical simulation where discrete agents
operate in a continuum scalar communication field, subject to Equation (1) - (3). Some ad-
ditional behavioral rules have to be defined to model the interaction of agents with the
substrate. We realize the substrate by discrete obstacles arranged in a circular ring. Agents
will attach to an obstacle if they are within the detection range, ld , and if the measured
communication field value is above the threshold, i.e. c ≥ c∗ℎi. The agent will then reverse
its direction of motion, by changing the sign of G in Equation (2). This results in a gradient
descent behavior and the attached obstacle will be detached once the measured communi-
cation field value satisfies c < c∗lo. After detachment, the sign ofG is changed again. If agents
encounter other agents or obstacles within the detection radius but c < c∗, the agents will
avoid the obstacle by turning randomly.
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582

583

There are a few tuned behaviors we implemented to allow scaling the simulation to
larger numbers of agents while maintaining the tunneling behavior. First, the gradient ∇⟂cin Equation (2) is passed through a tanh(.) function to limit the turning rate of the agents.
Second, the noise term in Equation (2) was set to zero for this simulation and the only source
of randomness are the random turns during obstacle avoidance. Third, agents pause for
tp1 when they encounter an obstacle and for tp2 when picking up an obstacle. This helps
disrupting potential “pheromone traps” to be formed where agents are bound to a region
of space due to a high field concentration.
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The simulation parameters are described in the following table. All parameters are non-
dimensionalized by the corral size L and the base speed of the agents, v0.

592

593

Parameter Description Value
nr Number of agents 1-100
no Number of substrate elements 300
nl Number of corral layers 3
T Maximum simulation time 66
k+ Communication field production rate 97.5
k− Communication field decay rate 0.75
Da Communication field diffusivity 4.2 × 10−3

c∗ℎi Excavation threshold 1
2
k+
k−

c∗lo Detachment threshold 0.11
�2g Agent field production width (variance) 2.8 × 10−3

ld Agent obstacle detection range 0.03
tp1 Pause after obstacle detection 0.07
lp2 Pause after substrate attachment 0.27
G Rotational gain 0.135

594

Appendix 2 Table 1. Parameters of agent-based simulation.595596
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Continuummodel of cooperative task execution597

The dimensional equations for the ant-density %a(x, t), antennating field c(x, t) and the corral
%s(x, t) are given by,

)t%a + ∇ ⋅ (ua%a) = ∇ ⋅ (Da∇%a − �%a∇c), (12)
)tc = Dc∇2c + k+%a − k−c, (13)
)t%s = −

1
4
ks%s(1 + tanh[�c(c − c∗)])

(1 + tanh[�c(%a − %∗a)]), (14)
where velocity of the collective is ua = vo(1 − %s∕%o)p̂, capturing the reduction in velocity as
the ant collides with the corral. We approximate the Heaviside function, Θ(x) here using the
hyperbolic function [1 + tanh(x)]∕2. In the coarse-grained picture describing the collective
tunneling seen in experiments the relevant variables (shown schematically in Figure 4) are
the density of ants, %a; their velocity, ua; amplitude of the antennating field, c; the density of
corral, %s. Here we discuss the limits of phase-space that are not described in the main text
i.e. when E,≠ 0 and also the simulation details.
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609

Time-scale Process
�a ∼ l2∕Da Ant diffusion
�v ∼ l∕vo Ant collective migration

�x ∼ l2∕(�co) Taxis due to antennating field gradient
�+ ∼ co∕(k+%o) Antennating field production
�c ∼ l2∕Dc Antennation field diffusion
�− ∼ 1∕k− Antennating field decay
�s ∼ 1∕ks Corral excavation

Length-scale Process
L Corral width
la Initial width of ant density

Da∕vo Ant density advection-diffusion
(Dc∕k−)1∕2 Antennating field diffusion-decay

610

Appendix 2 Table 2. Time-scales and length-scales associated with different processes in the modelin Equation 12- Equation 14.611

612613

Limits of phase-space when E ≠ 0614

Different phases of task execution/failure arise when the excavation parameter E and the
cooperation parameter C are varied. In the cooperation dominated phase if the excavation
rate of the agents is small, they get jammed and the analysis in the previous section holds
true. When the cooperation among the agents is low, we have C ≪ 1 which results in dif-
fusion dominated regime. Based on the strength of the excavation parameter E, the corral
can be partially tunneled or just diffuse. Since we assume that the relevant length scale is
of the same order as the width of the corral, L ∼ l, our analysis reduces to different phases
based on whether E≫ 1 (where we get partial-tunneling) or E≪ 1 (we get diffusion). Based
on this we get partial tunneling or diffused phase as listed in Table 3.

615

616

617
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619

620

621

622

623

In SI Figure 1 we show results from 1-D simulations highlighting the effect of different
terms we have discussed from Equation 4-Equation 5 corresponding to different parts of
the phase space of cooperative excavation. In the ant density diffusion dominated regime,
i.e. C ≪ 1,E ≪ 1, shown in SI Figure 1(b), there is little cooperation; rapid diffusion with
slow excavation results in no tunneling. As we have seen in Figure 4(b, c), tunneling and par-
tial tunneling are inferred through the ultimate state of the corral and the ant-density. In
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SI Figure 1(d, e) we show how the relative rate of the antennating field diffusion compared
to decay, i.e. Dc ∼ (1) leads to either tunneling or partial tunneling as we vary the coop-
eration parameter C. Decreasing C causes the maximum of %a(x, t), c(x, t) to go down (ref
SI Figure 1(c)),and the width of the initial ant density field increases. Increasing C leads to
successful tunneling driven by the propagation of the location of maximum ant density xlocdue to excavation of the corral. Furthermore, we see that the ants can be jammed either
because the antennating field diffusion dominates, i.e. Dc ∼ k̂± ≫ 1, or because of the same
field decays rapidly, i.e. k̂± ∼ (1),Dc ≪ 1. In both these cases however cooperation is what
drives the aggregation. Lastly, we see that in order to achieve partial tunneling there are
several routes depending upon the relative magnitudes of {C,E,V, k̂±,Dc} listed in Table 3.
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Appendix 2 Figure 1. The ant density field %a(x, t), antennating field c(x, t) and corral density %s(x, t) forvarious scenarios of interest in the phase-space: (a) partial tunneling and tunneling when thethreshold for excavation is small i.e. %∗a = c∗ = 0.01, we see homogeneous excavation and can gettunneling and partial tunneling; (b) when we are in the diffusive phase where ant density diffusiondominates, C = 0.02 and the excavation rate is very small, E = 6 × 10−4; (d, e) partial tunneling andtunneling when the length scale due to antennating field diffusion and decay is of the same order asthe initial ant density i.e. la ∼ (Da∕k−)1∕2. (c) Evolution of maximum value of %a, c for 3 different C andfixed E = 1.44. (f ) Table with parameters used in simulations corresponding to different titles shownin gray bar in (a − e).
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C E V k̂± Dc Phase
≫ 1 ≫ 1 ≫ 1 (1) ≪ 1 Tunneling
≫ 1 ≫ 1 ≫ 1 ≪ 1 (1) Tunneling
≪ 1 ≫ 1 ≫ 1 (1) ≪ 1 Partial-Tunneling
≪ 1 ≫ 1 ≫ 1 ≪ 1 (1) Partial-Tunneling
≫ 1 ≪ 1 - (1) ≪ 1 Jammed
≫ 1 ≪ 1 - ≪ 1 (1) Jammed
≪ 1 ≪ 1 - - - Diffused

651

Appendix 2 Table 3. Different phases in different limits of phase-space of parameters in the model.652653

Simulation details654

All the simulations shown in the main text as well the ones above were performed using
commercial software COMSOLTM, in their general form Partial Differential Equations solver.
We choose a very fine resolution with maximum mesh size of 0.005 in a domain of size 2
units in 1D simulations and maximum mesh size of 0.25 in a circular domain of radius 5
units in 2D. The initial condition for the ant density, %a(r, 0) is exp(−(r − ro)2∕2l2a) where ro =
0.4, la = 0.16 and the density of the corral %s(r, 0) is chosen to be [1 + tanh(�(r−2.5))]∕2 where
� = 30. We set the parameter �c = 50 in 1D, �c = 10 in 2D while %∗ = 0.3, c∗ = 0.01. The other
parameters used in the simulations in Figure 4, SI Figure 1 and Figure 5(a − e) are listed in
(f ). In the 2D simulations in Figure 5we assume a spatio-temporally varying self-propulsive
velocity field of the form, ua = vo{exp(−y2∕2�2), exp(−t∕�)(1−exp(−(x−xo)2∕2�2))}, vo = 0.1, xo =
0.2, �2 = 0.75, � = 10.
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Appendix 3666

Robot Ants667

RAnt design668

RAnts were designed to accommodate the essential electronic and electromechanical parts
required for locomotion, picking and placing, and sensing. An exploded view is shown in
Figure 1. RAnts are powered with a rechargeable 3.7V battery with 400mAh (Pkcell LIPO
801735) and are coordinated with a microcontroller (Adafruit ItsyBitsy M0 Express). The
RAnt’s wheels have a diameter of 25mmand are directly drivenwith two brushedDCmotors
with a planetary gearbox rated at 85 RPM at 3.7V. Rubber o-rings are attached to the wheels
to increase traction. A dual motor controller (Pololu DRV8835 Dual Motor Driver Carrier)
sets the desired output speed of the motors given a PWM signal from the microcontroller.
The mechanism to pick up wall elements was realized using a permanent magnet that is re-
tractable inside the RAnt. A linear servo motor (Spektrum SPMSA2005) moves a permanent
magnet inside a guide such that, when fully extended, the magnet attracts ferromagnetic
materials and when retracted, themagnetic force is small enough to drop any previously at-
tached objects.

674

675

676

677

678

679

680

681

682

683

684

685

686

669

Appendix 3 Figure 1. Exploded view of a RAnt and a wallelement.670

671672

673

The objects to be picked up
are cylindrical wall elements of
dimension 22mm×40mmmade
of polyvinyl chloride (PVC) tubes
which have a ferromagnetic ring
of 3mm thickness embedded in
them. The ring was 3D printed
using polylactic acid (PLA)mixed
with steel powder (colorFabb
SteelFill) and was sandwiched
between two PVC tubes. If the
RAnt is sufficiently close (≈3mm)
to a wall element with an en-
gaged magnet, the ring in the
wall element is attracted to the
magnet and the wall element is
slightly lifted from the ground
(≈1mm) for transportation due
to the elevated position of the
magnet relative to the ferro-
magnetic ring. RAnts have two

typers of sensors; two light sensors (Adafruit ALS-PT19) located at the bottom left and right
of the RAnt (relative to the direction of travel) and an infrared (IR) distance sensor (Everlight
ITR20001 opto interrupter) capable of detecting objects within 3cm in front of the RAnt. The
chassis of the RAnt is 3D printed using acrylic styrene acrylonitrile (ASA) and supports all the
internal components. The wheels of the RAnts were printed with the same material. Due
to the design of the wheel arrangement, which was inspired by the zooid robots (Le Goc
et al., 2016), we require two small steel caster balls of 3mm in diameter that help stabilize
the RAnt. The steel balls can be pressed into the bottom of the 3D printed chassis. A 3D
printed case made of ASA encloses all internal components of the RAnts, except for a small
switch to power the RAnt on or off. A small blue sticker of 6mm in diameter was placed on
the center top of the case and is used for tracking of the RAnt’s position with the webcam
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mounted above the arena.
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RAnt programming720

The RAnt behavior is coordinated by the microcontroller which we programmed according
to the pseudocode shown in Algorithm 1. The program is initialized with a variable d that
encodes the direction of travel (1 for forward, -1 for backward), the cooperation parameter
C ∈ [0, 1], the RAnt’s base speed vb, and the light intensity threshold c∗. This threshold wasset at 50% of the maximal light intensity that can be generated by the photormone field
multiplied by the cooperation parameter, i.e. c∗ = 0.5 × cmax × C.
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After initialization, the program enters a while loop which is running until the RAnt is
switchedoffor the battery voltage drops below3.5V. The loop startswith setting the heading
of the RAnt, which effectively sets the turning rate. The turning rate is a function of the
cooperation parameter and a stochastic processW (Wiener process) which is integrated in
the microprocessor. The turning rate follows the equation

Ω = Cd
cL − cR
cmax

+ (1 − C) b sin (�W ) (15)
with cL and cR the photormone intensity measured in the left and right light sensors, respec-
tively, cmax is the maximal photormone intensity measurable by the sensors, and b = 0.3 is
a fixed amplitude. Using a sine function we map the stochastic process W to the range
[−1, 1] to avoid getting stuck in constant rotation for large excursions of W . The first term
in Equation 15 corresponds to phototaxis using the projected photormone and the second
term to a random walk. We can tune the influence of either terms with the cooperation
parameter C from pure phototaxis at C = 1 to a random walk at C = 0. The turning rate is
used to define the rotation speed of each wheel. One wheel is always turning at a base rate
!1 = !b = vb∕R (with R the wheel’s radius) and the other wheel at

!2 = !b (1 − 2‖Ω‖) . (16)
The assignment of !1 and !2 to the left and right wheel is flipped according to the sign of Ω.With this definition, at a value of Ω = ±1 a RAnt turns on the spot without any translation
and at Ω = 0 the RAnt moves on a straight path without rotation.
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After the heading was defined and the turning rates sent to the motor driver, the dis-
tance sensor is checked for any obstacles that are present up to 3cm in front of the RAnt.
At the same time, the light sensors are checked and compared to the threshold value c∗. If
an object is detected and the photormone value exceeds c∗, the RAnt performs a fetching
manoeuvre that consists of engaging the magnet with probability E, moving forward for a
second with half the base speed vb then move backwards for the same amount of time. Af-
ter the fetching manoeuvre, the direction parameter is inverted, i.e. d = −1. If an object is
picked up with the magnet after the fetching maanoeuvre, the distance sensor will report a
detected object as long as it is attached to the magnet. Since d = −1, the RAnt will perform
the same type of gradient driven locomotion described in Equation 15 and Equation 16 but
the sign of the signal sent to the motor driver will be inverted, resulting in a reverse motion
of the RAnt. If an object is detected, but the photormone concentration in both sensors is
lower than c∗, an avoidance manoeuvre is performed which consists of a random rotation
in place in any direction with the intent to turn away from the detected obstacle.
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The next if-statement checks again if an obstacle is detected, but without the condition
that the direction parameter is equal to one. If no obstacle is detected, the direction param-
eter d is set to one and the magnet is disengaged.
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Algorithm 1: RAnt behavioral algorithm

Result: Cooperative escape in Robot Ants
d = 1;
C ∈ [0, 1];
c∗ = 0.5× cmax × C;
while true do

set heading;
if object detected & d = 1 then

if c > c∗ then
engage magent with probability E;
fetch object;
d = −1;

else
turn away from object;

end

end
if no object detected then

d = 1;
disengage magnet;

end
if d = −1 and P < kC then

disengage magnet;
turn away from object;
d = 1;

end

end

767

This guarantees that if a fetching manoeuvre is performed but the wall element was not
picked up or the object was another RAnt, the RAnt goes back to moving forward.
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The last if-statement checks whether the RAnt is in the reverse mode d = −1 and if the
photormone concentration dropped below the threshold c∗. if both statements are true, the
magnet is disengaged, dropping any potentially picked up wall elements, and the direction
parameter is set back to d = 1. In order to avoid the RAnt from picking up the just dropped
element, it performs a random rotation in place in any direction before going back to the
start of the main loop.
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Experimental set-up776

The photormone was projected with an Epson EX9200 projector onto an acrylic sheet with a
translucent top, which served as the surface onwhich theRAnts are operating. Theprojector
uses three-chip digital light processing (DLP) which is required for the light sensors in the
RAnts to pick up the photormonefield. Testswith single-chipDLPprojectors generated large
noise in the light sensors and phototaxis was not possible. The dynamics of the photormone
field is a function of the RAnt’s positions and is given by

)tc = D∇2c − kMc + kP
n
∑

i=1
 (ri,�) (17)

with c = c(x, t) the photormone concentration at position x = [x, y] and time t,D = 10−5m2s−1

the diffusion coefficient, kM = 1 s−1 the decay rate, kP = 6.5 s−1 the photormone production
rate, n the number of RAnts detected in the arena,  (ri,�) a bivariate normal distribution
with the position of the ith RAnt ri as the mean and covariance � with diagonal entries
�2 = 10−4m2. The position of the RAnts are used as the centers of sources of photormone.
If a RAnt is not moving, photormone is built up with rate kP at that location over time and
diffuses out. When the RAnt moves to a new location, the built up photormone decays with
rate kM . The reasoning for the parameter choices is as follows. The parameters were tuned
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to allow for a RAnt located at one position for one second to leave a detectable trace for 5
seconds. During that time, another RAnt moving at base speed vb ≈ 5cm∕s can travel half
the diameter of the arena. The diffusion length over the decay time scale is ≈ 3mm which
may appear small, however, RAnts are not alwaysmoving at base speed but often located in
a particular location for multiple seconds to evenminutes. The parameter choice described
here has shown to neither saturate the domain with photormone nor be too volatile, but
allowing the photormone to act as a spatiotemporal memory for the RAnts over the course
of an experiment.
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The positions of the RAnts are tracked with a webcam mounted above the arena and
evaluated in Matlab. Blue markers are attached on the centroid of the case’s upper sur-
face which allow to use a simple blob detection to identify the pixel position of the RAnts.
The photormone concentration is then dynamically updated in the same Matlab script and
displayed on the RAnt arena with the projector. The tracking and integration of the photor-
mone field is executed in real time which restricted the update rate of the projected field
to 8Hz on average. The low refresh rate did not have any noticeable consequences for the
conducted experiments but might have affected results for RAnts with a much larger base
speed and more volatile photormone dynamics.
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The set-up of the enclosure for the RAnts consisted of approximately 200 wall elements
arranged in three concentric circles where the outermost circle had a diameter of 50 cm. The
outermost circle was prevented from being pushed outward from their initial position by a
thin plastic ring that was attached to the base of the arena. The plastic ringwas thick enough
to prevent wall elements from leaving the confinement, but thin enough for RAnts to roll
over it to escape the arena. For every experiment we randomly placed the rants in the arena
and waited for the first RAnt to excavate out or the time limit of 15 minutes to be reached.
At that point, data was stored and the experiment ended. Most experiments required no
intervention, but in case of an empty battery of a RAnt or any unexpected critical failure
during the experiments, we had two RAnts standing by to replace the defective RAnt. Since
all RAnts are identical and the main memory is communicated through the environment
and the photormone concentration, a switch has no further statistical consequences on the
outcome of the experiments. There was no leader and no dedicated roles, which makes
every RAnt replaceable.
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We conducted experiments for five cooperation parameters C = {0, 0.25, 0.5, 0.75, 1} at
fixed excavation rate E = 1 and repeated experiments five times for each parameter. Every
RAnt’s software was updated before a new set of five experiments with the same coopera-
tion parameter was conducted. For every experiment, we stored the webcam data and time
stamps. The video frameswere post-processed and locations of all RAnts andwall elements
were stored as a function of time.
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For the phase diagram experiments we used the previous data for cooperation param-
eters C = 0 and C = 1 for partial tunneling and tunneling, respectively. To induce jamming
behavior and diffusion behavior the excavation rate had to be changed in the internal pro-
gramming of the RAnts. By setting the excavation rate E = 0 the probability of the magnet
engaging vanishedwhich led to jamming for high cooperation parameters, and diffusion for
low cooperation parameters. We only collected data for two trials of a few minutes each in
the diffusion and jamming case as tunneling cannot be initiated with disengaged magnets
which reduces the timescales over which the behavior occurs.
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Cooperation parameter839

We explored the effect of cooperation parameters on the excavation time and excavation
performance as stated in themain text. Five cooperationparameters, i.e. C = {0, 0.25, 0.5, 0.75, 1},
were selected each of which was tested in five RAnt experiments with five RAnts. SI Figure 3
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shows the final wall element distribution and the RAnt density averaged over the whole trial
for all the conducted 25 experiments.
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From the final wall element distribution one can deduce the degree of focus during the
tunneling effort. For low cooperation parameters the initial three layers are excavated at
multiple excavation sites. As the cooperation parameter increases, less excavation sites are
visible and at C = 1 there is in general only one large excavation site.
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Appendix 3 Figure 2. (a) Von Mises concentration parameter, Kb, of the angular position of theexcavated boundary elements as a function of time for different cooperation parameters andaveraged over 5 experiments per cooperation parameter. (b) Total travelled distance of RAnts fordifferent cooperation parameters. The travelled distance x is scaled by the size of the arenda D. Thedashed line shows the travelled distance of a RAnt moving at base speed vb constantly. (c) RAnts’averaged speed v normalized by vb = D∕ts for different cooperation parameters C.
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While the final wall distribution shows only a snapshot in time, the RAnt distribution is
averaged over time and therefore displayswhere the RAnts weremostly located throughout
the run. At low cooperation numbers, the RAnt density is generally distributed all across
the arena. Localization of the density toward one region was observed for low cooperation
parameters as excavated wall elements were forming a new boundary that confined the
RAnt motion to that region (see e.g. C = 0 T4, C = 0.25 T4). As the cooperation number
increases, more distinct localized density becomes apparent. Due to the photormone field
Rants operating at higher cooperation parameter values are more likely to start excavating
in locations where RAnts have previously been present. The location of that attracting field
is not known a priori, but emerges spontaneously through the interaction with other RAnts.
The location of the peak density field at higher cooperation numbers strongly correlates
with the point of excavation in the wall. The difference in RAnt behavior as a function of the
cooperation parameter is the degree of focus during excavation as represented by the von
Mises parameter of the angular position of excavated boundary elements shown in ??(a).
A large value of the parameter indicates a high degree of concentration of the excavation
effort, while low values indicate a scattered distribution of many digging sites. Another
metric to assess the behavioral difference induced by the cooperation parameter is the
traveled distance of the RAnts. SI Figure 2 (b) displays the total travelled distance of a rant
x normalized by the arena diameter D as a function of the normalized time t∕ts, where
ts = D∕vb and vb the base speed, shows that RAnts travel a greater distance in the same
amount of time at higher concentration parameters. The theoretical limit of the travelled
distance is shown with the dashed line in the left-hand side figure, reflecting that RAnts
do not constantly move at base speed, but are interrupted by other RAnts, obstacles, and
fetching/dropping manoeuvres. As shown in SI Figure 2 (c), RAnts travel at about a fifth of
the base speed on average. An increase of the average speed is observed as a function
of the cooperation parameter, which can be explained by the fact that obstacles are more
scattered at lower cooperation parameters, effectively reducing the mean free path of a
RAnt.
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885

Appendix 3 Figure 3. Final wall element distribution and averaged RAnt density field (in units of#/cm2) over the full duration of the run for all 20 experiments.886

887888

RAnt density889

In our main result we used five RAnts to explore cooperative excavation in an artificial sys-
tem. More RAnts than five hindered the excavation behavior as fellow RAnts would block
each others path or disturb a RAnt during the fetching and deposition of wall elements.
Fewer RAnts did manage to excavate out, but the excavation rate is slower and the sponta-
neous formation of an excavation site due to accumulation of photormone occurs later if at
all. SI Figure 4 shows the final wall element positions and RAnt density field averaged over
time for C = 1 and two experiments with one RAnt and two experiments with three RAnts.
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897

Appendix 3 Figure 4. Final wall element distribution and averaged RAnt density field (in units of#/cm2) over the full duration of the run for experiments with one and three RAnts. The cooperationparameter was set to C = 1 and the experiments was repeated twice (Trials T1 and T2).
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A single RAnt can efficiently excavate a site if an initial photormone seed is present, but it is
not robust. In fact, even though theRAnt in T2managed to remove someelements in the last
layer, it never excavated out but lost the photormone seed where it was digging and started
diffusing again. Three rants weremore successful in generating an initial photormone seed,
but excavation occured at multiple sites even for C = 1 since the lower number of RAnts did
not generate one dominating photormone field.
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Phases of cooperation in RAnts908

In the RAnt case we can infer the phase in which the RAnts operate by looking at the tunnel
size, 1∕Kb(t) and the location along the boundary at which the RAnts are localized, %r(�) asthey execute their task. We find that in the jammed and diffused phase there exists no
tunnel and the variance remains zero throughout the process. However the location along
the boundary �b at which the RAnts spend their time the most has a large peak around the
jammed location due to high cooperationwhich in the case of diffusion remains widespread
(see ??).
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916

Appendix 3 Figure 5. From the RAnt experiments in Figure 8, Kb is the von Mises concentrationparameter computed from the location of the boundary and %r is the angular distribution of the RAntsin the arena averaged over time. �b is the time-averaged mean azimuthal location of the RAnts in thearena. RAnts present over longer periods in a particular sector of the arena will cause a peak in %r.One can infer the phase the RAnts are in by measuring these two quantities.
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A successful tunnel, as we have already seen, has an initial increase in the variance that
plateaus rapidly due to cooperation driven focus at a given location. As the RAnts are lo-
calized, focusing on their task, we again see peaks around the location of the tunnel. For
a partial tunnel, due to low cooperation, the variance in the tunnel size is large and the lo-
cation along the boundary the RAnts spend their effort is spread out. Thus the phase the
RAnts operate in can be distinguished by using information about the environment, i.e. the
tunnel size, in combination with agent dynamics, i.e. their location.
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AI discovers new nanostructures

Scientists at the U.S. Department of Energy's (DOE) Brookhaven National
Laboratory have successfully demonstrated that autonomous methods can
discover new materials. The artificial intelligence (AI)-driven technique led to
the discovery of three new nanostructures, including a first-of-its-kind nanoscale
"ladder." The research was published today in Science Advances.

The newly discovered structures were formed by a process called self-assembly,
in which a material's molecules organize themselves into unique patterns.
Scientists at Brookhaven's Center for Functional Nanomaterials (CFN) are
experts at directing the self-assembly process, creating templates for materials to
form desirable arrangements for applications in microelectronics, catalysis, and
more. Their discovery of the nanoscale ladder and other new structures further
widens the scope of self-assembly's applications.

"Self-assembly can be used as a technique for nanopatterning, which is a driver
for advances in microelectronics and computer hardware," said CFN scientist
and co-author Gregory Doerk. "These technologies are always pushing for higher
resolution using smaller nanopatterns. You can get really small and tightly
controlled features from self-assembling materials, but they do not necessarily
obey the kind of rules that we lay out for circuits, for example. By directing self-
assembly using a template, we can form patterns that are more useful."

Staff scientists at CFN, which is a DOE Office of Science User Facility, aim to
build a library of self-assembled nanopattern types to broaden their
applications. In previous studies, they demonstrated that new types of patterns
are made possible by blending two self-assembling materials together.

"The fact that we can now create a ladder structure, which no one has ever
dreamed of before, is amazing," said CFN group leader and co-author Kevin
Yager. "Traditional self-assembly can only form relatively simple structures like
cylinders, sheets, and spheres. But by blending two materials together and using
just the right chemical grating, we've found that entirely new structures are
possible."

Blending self-assembling materials together has enabled CFN scientists to
uncover unique structures, but it has also created new challenges. With many
more parameters to control in the self-assembly process, finding the right
combination of parameters to create new and useful structures is a battle against
time. To accelerate their research, CFN scientists leveraged a new AI capability:
autonomous experimentation.

In collaboration with the Center for Advanced Mathematics for Energy Research
Applications (CAMERA) at DOE's Lawrence Berkeley National Laboratory,
Brookhaven scientists at CFN and the National Synchrotron Light Source II
(NSLS-II), another DOE Office of Science User Facility at Brookhaven Lab, have
been developing an AI framework that can autonomously define and perform all
the steps of an experiment. CAMERA's gpCAM algorithm drives the framework's
autonomous decision-making. The latest research is the team's first successful
demonstration of the algorithm's ability to discover new materials.



"gpCAM is a flexible algorithm and software for autonomous experimentation,"
said Berkeley Lab scientist and co-author Marcus Noack. "It was used
particularly ingeniously in this study to autonomously explore different features
of the model."

"With help from our colleagues at Berkeley Lab, we had this software and
methodology ready to go, and now we've successfully used it to discover new
materials," Yager said. "We've now learned enough about autonomous science
that we can take a materials problem and convert it into an autonomous
problem pretty easily."

To accelerate materials discovery using their new algorithm, the team first
developed a complex sample with a spectrum of properties for analysis.
Researchers fabricated the sample using the CFN nanofabrication facility and
carried out the self-assembly in the CFN material synthesis facility.

"An old school way of doing material science is to synthesize a sample, measure
it, learn from it, and then go back and make a different sample and keep
iterating that process," Yager said. "Instead, we made a sample that has a
gradient of every parameter we're interested in. That single sample is thus a vast
collection of many distinct material structures."

Then, the team brought the sample to NSLS-II, which generates ultrabright
x-rays for studying the structure of materials. CFN operates three experimental
stations in partnership with NSLS-II, one of which was used in this study, the
Soft Matter Interfaces (SMI) beamline.

"One of the SMI beamline's strengths is its ability to focus the x-ray beam on the
sample down to microns," said NSLS-II scientist and co-author Masa Fukuto.
"By analyzing how these microbeam x-rays get scattered by the material, we
learn about the material's local structure at the illuminated spot. Measurements
at many different spots can then reveal how the local structure varies across the
gradient sample. In this work, we let the AI algorithm pick, on the fly, which spot
to measure next to maximize the value of each measurement."

As the sample was measured at the SMI beamline, the algorithm, without human
intervention, created of model of the material's numerous and diverse set of
structures. The model updated itself with each subsequent x-ray measurement,
making every measurement more insightful and accurate.

In a matter of hours, the algorithm had identified three key areas in the complex
sample for the CFN researchers to study more closely. They used the CFN
electron microscopy facility to image those key areas in exquisite detail,
uncovering the rails and rungs of a nanoscale ladder, among other novel
features.

From start to finish, the experiment ran about six hours. The researchers
estimate they would have needed about a month to make this discovery using
traditional methods.

"Autonomous methods can tremendously accelerate discovery," Yager said. "It's
essentially 'tightening' the usual discovery loop of science, so that we cycle
between hypotheses and measurements more quickly. Beyond just speed,
however, autonomous methods increase the scope of what we can study,



meaning we can tackle more challenging science problems."

"Moving forward, we want to investigate the complex interplay among multiple
parameters. We conducted simulations using the CFN computer cluster that
verified our experimental results, but they also suggested how other parameters,
such as film thickness, can also play an important role," Doerk said.

The team is actively applying their autonomous research method to even more
challenging material discovery problems in self-assembly, as well as other
classes of materials. Autonomous discovery methods are adaptable and can be
applied to nearly any research problem.

"We are now deploying these methods to the broad community of users who
come to CFN and NSLS-II to conduct experiments," Yager said. "Anyone can
work with us to accelerate the exploration of their materials research. We foresee
this empowering a host of new discoveries in the coming years, including in
national priority areas like clean energy and microelectronics."

This research was supported by the DOE Office of Science.
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Summary:

Swarm intelligence caused by physical mechanisms
Researchers studied swarm behavior of microswimmers

January 13, 2023

Universität Leipzig

Seemingly spontaneously coordinated swarm behavior exhibited by large groups of animals

is a fascinating and striking collective phenomenon. Experiments conducted on laser-

controlled synthetic microswimmers now show that supposed swarm intelligence can

sometimes also be the result of simple and generic physical mechanisms. A team of

physicists found that swarms of synthetically produced Brownian microswimmers appear to

spontaneously decide to orbit their target point instead of heading for it directly.

FULL STORY

Seemingly spontaneously coordinated swarm behaviour exhibited by large groups

of animals is a fascinating and striking collective phenomenon. Experiments

conducted by researchers at Leipzig University on laser-controlled synthetic

microswimmers now show that supposed swarm intelligence can sometimes also be

the result of simple and generic physical mechanisms. A team of physicists led by

Professor Frank Cichos and Professor Klaus Kroy found that swarms of synthetically

produced Brownian microswimmers appear to spontaneously decide to orbit their

target point instead of heading for it directly. They have just published their findings

in the journal Nature Communications.

"Scientific research on herd and flock behaviour is usually based on field observations. In such cases, it is

usually difficult to reliably record the internal states of the herd animals," Kroy said. As a result, the

interpretation of observations frequently relies on plausible assumptions as to which individual behavioural

rules are necessary for the complex collective groups under observation. Researchers at Leipzig University

therefore developed an experimental model system of microswimmers that elicits properties of natural

swarm intelligence and provides complete control over the individuals' internal states, strategies, and

transformation of signal perception into a navigational reaction.

Thanks to a sophisticated laser heating system (see image), the colloidal swimmers, which are visible only

under the microscope, can actively self-propel in a water container by a kind of "thermophoretic self-

propulsion" while their travel is permanently disturbed in a random manner by Brownian motion. "Apart from

Brownian random motion, which is ubiquitous in microphysics, the experimental set-up provides complete

control over the physical parameters and navigation rules of the individual colloidal swimmers and allows

long-term observations of swarms of variable sizes," Cichos said.

According to Cichos, when just a very simple and generic navigation rule is followed identically by all of the

swimmers, a surprisingly complex swarm behaviour results. For example, if the swimmers are aiming at the

same fixed point, instead of them gathering at the same place a kind of carousel can form. Similar to

satellites or atomic electrons, the swimmers then orbit their attractive centre on circular paths of varying

https://www.sciencedaily.com/
https://www.sciencedaily.com/
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heights. The only "intelligent" behavioural rule required for this is that the self-propulsion responds to

environmental perception with a certain time delay, which usually occurs in natural swarm phenomena from

mosquito dances to road traffic anyway. It turns out that such a "delayed" effect alone is sufficient to form

complex dynamic patterns such as the carousel described above. "Physically speaking, each individual

swimmer can spontaneously break the radial symmetry of the system and go into circular motion if the

product of the delayed time and swimming speed is large enough," Kroy said. In contrast, the orbits of larger

swarms and their synchronisation and stabilisation depend on additional details such as the steric, phoretic

and hydrodynamic interactions between the individual swimmers.

Since all signal-response interactions in the living world occur in a time-delayed manner, these findings

should also further the understanding of dynamic pattern formation in natural swarm ensembles. The

researchers deliberately chose primitive and uniform navigation rules for their experiment. This allowed them

to develop a stringent mathematical description of the observed phenomena. In the analysis of the delayed

stochastic differential equations used for this purpose, the delay-induced effective synchronisation of the

swimmers with their own past turned out to be the key mechanism for the spontaneous circular motion. To a

large extent, the theory allows us to mathematically predict the experimental observations. "All in all, we

have succeeded in creating a laboratory for swarms of Brownian microswimmers. This can serve as a

building block for future systematic studies of increasingly complex and possibly still unknown swarm

behaviour, and it may also explain why puppies often circle their food bowl when they are being fed," Cichos

said.
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Spontaneous vortex formation by
microswimmers with retarded attractions

Xiangzun Wang1, Pin-Chuan Chen2, Klaus Kroy 2, Viktor Holubec 3 &
Frank Cichos 1

Collective states of inanimate particles self-assemble through physical inter-
actions and thermal motion. Despite some phenomenological resemblance,
including signatures of criticality, the autonomous dynamics that bindsmotile
agents into flocks, herds, or swarms allows for much richer behavior. Low-
dimensional models have hinted at the crucial role played in this respect by
perceived information, decision-making, and feedback, implying that the
corresponding interactions are inevitably retarded. Here we present experi-
ments on spherical Brownian microswimmers with delayed self-propulsion
toward a spatially fixed target. We observe a spontaneous symmetry breaking
to a transiently chiral dynamical state and concomitant critical behavior that
do not rely onmany-particle cooperativity. By comparison with the stochastic
delay differential equation of motion of a single swimmer, we pinpoint the
delay-induced effective synchronization of the swimmers with their own past
as the key mechanism. Increasing numbers of swimmers self-organize into
layers with pro- and retrograde orbital motion, synchronized and stabilized by
steric, phoretic, and hydrodynamic interactions. Our results demonstrate how
evenmost simple retarded interactions can foster emergent complex adaptive
behavior in small active-particle ensembles.

Ordered dynamical phases of motile organisms are ubiquitous in
nature across all scales1, from bacterial colonies to insect swarms, and
birdflocks2. In particular, self-organization into vortex patterns is often
observed and has been attributed to some local external attractor, e.g.,
light or nutrient concentration, together with behavioral rules like
collision avoidance and mutual alignment3. The pertinent social
interactions are commonly thought to be based on perception4–6 and
the ability to actively control the direction of motion3. They are also
generally presumed to provide some benefits to the individual and to
the collective, as in the case of collision avoidance or predator
evasion7,8. However, since such interactions are usually derived only
indirectly and approximately from observations9, it is arguably useful
to coarse grain them, e.g., into simple alignment rules, in order to
rationalize the collective effects with the help of simple mechanistic
models, in particular with respect to their emerging universal

traits3,10–12. This strategy has been successful in physics and is also
supported by the observation that biological collectives often appear
highly susceptible to environmental influences and exhibit a dynamical
finite-size scaling reminiscent of critical states in inanimatemany-body
assemblies13–16.

Importantly, the cascades of complex biochemical/biophysical
processes17,18 needed to transformsignal perception into anavigational
reaction inevitably result in retarded interactions upon coarse-
graining19 (cf. supplementary Table S1). This generic complication is
oftendismissed in the analysis, anddedicatedmodels andexperiments
addressing the role of time delays in the activematter are still rare20–23,
although these have occasionally been shown to fundamentally alter
the collective dynamics21 and tobring it closer to that found innature24.
To a first approximation, delay effects can resemble inertial correc-
tions to an otherwise overdamped biological dynamics25. In particular,
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both have the propensity to give rise to oscillations and inertia,
moreover, to rotationalmotion around an attractive center, as familiar
from planetary orbits.

Experiments that can assess or even deliberately control retarded
interactions in living systems turn out to be difficult. But by imposing
time delays onto synthetic active particles via computer-controlled
laser activation we can create an ideal laboratory system to experi-
mentally emulate such situations. Suitable feedback control techni-
ques for active particles have recently become available through
photon nudging26. The technique allows to adjust a particle’s propul-
sion speed to acquire real-time information (positions and directions
of motion) about the dynamical state of an ensemble. It has previously
been employed to rectify the rotational Brownian motion for particle
steering and trapping27, to explore orientation-density patterns in
activity landscapes28, and to study information flow between active
particles23, and their emerging critical states29,30. Beyond what related
computer simulations accomplish31–33, these experiments additionally
incorporate the full real-world complexity arising from actual physical
interactions due to hydrodynamic, thermal, or concentration fields. In
the following, we describe experiments with feedback-controlled
active Brownian microswimmers aiming at a fixed target by a retarded
thermophoretic self-propulsion. The systematic navigational errors
resulting from the retardation are seen to cause a spontaneous sym-
metry breaking to a bi-stable dynamical state, in which the swimmers
self-organize into a merry-go-round motion that switches transiently
between degenerate chiralities.

Results
Single-particle retarded interaction
The elementary component of a swarm is a single activeparticle whose
direction of motion depends dynamically on its environment. Even
small fluctuations of the particle position and orientation render any
prospective activemotionbasedon theperceptionof the environment
inaccurate, due to the inevitable finite perception–action delay. In the
most symmetric setup, an active particle moves toward a target

position, which is occupied by an immobile particle of the same size in
our experiments. Assuming that the active particle responds to the
environment that was perceived a delay time δt earlier, its propulsion
direction ûðtÞ at time t is determined by its relative position to the
target particle at time t − δt in the past, according to

ûðtÞ= �rðt � δtÞ
∣rðt � δtÞ∣ , ð1Þ

where r is the location of the active particle with respect to the target
particle’s center. We implemented this interaction rule in an experi-
mental feedback system that controls the active particles’ self-
propulsion. Our active particles are polymer spheres of radius
a = 1.09μm, decorated with gold nanoparticles and suspended in a
thin film ofwater. Laser light with a wavelength of 532 nm is focused at
distance d from the active particle center (Fig. 1A). The resulting
excentric heating excites an osmotic flow that lets the particle swim
with a speed v0 in the direction defined by Eq. (1)34. A darkfield
microscopy setup is used to image the particles (Fig. 1B). A computer
analyzes and records the positions of the particles and then controls
the laser position accordingly via an acousto-optic deflector. We use a
separate calibrator particle running on a quadratic trajectory as a
reference for the speed v0 attained by a free swimmer. Further details
are described in Sec. 2 of the Supplementary Information.

If δt = 0 s, the active particle moves towards the target particle
until it collides with it. Further motion of the active particle is then
constrained by the presence of the fixed target sphere, resulting in a
diffusivemotion around it, at a fluctuating distance consistent with the
barometer formula35,36. As the delay δt increases, the diffusive motion
induces a stochastic “error” component due to the increasingly mis-
aligned self-propulsion. Once a critical delay is reached, the particle
begins to orbit around the target (see Supplementary Movies 1–3). We
quantify this dynamics by the angle θ between the direction of motion
in Eq. (1) and the instantaneous negative radial direction −r(t) (see
Fig. 2A). The angle θ itself or sinðθÞ can serve as an indicator for

Fig. 1 | Experimental realization. A Particles used in the experiments consist of a
melamine resin colloid (2.18μm in diameter) with 8 nm gold nanoparticles scat-
tered across the surface (covering up to 10% of the total surface area). A 532 nm
laser focusedat the edgeof theparticle at a distanced from its center induces a self-
thermophoretic motion and allows for precise control of the propulsion direction.
Importantly, optical forces are weak so the particles exhibit a truly self-phoretic
autonomous motility, making them proper microswimmers. B Experimental setup
used to image the particles by darkfieldmicroscopy (LED, darkfield condenser, and
camera) and guide their motion by sequential beam steering of the laser on the

sample planewith a two-axis acousto-optic deflector (AOD). All particles in the field
of view are addressedduring eachexposureperiodof the camera.CThe interaction
rule for the delayed attraction of a single active particle (white sphere) towards a
target (red sphere) is split into an observation made at a time t − δt that sets the
direction of motion for the self-propulsion step exerted after a programmed delay
time δt. The green arrows indicate the planned motion −r(t − δt) and its actual
realization at time t. D Examples of darkfield microscopy images where a single
active particle (top) and 16 active particles (bottom) interact with one target
particle (red).
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deviations from the “intended” central orientation. Similarly, for many
particles, numbered by the index i, it is useful to define the rotational
order parameters oR,i = ðr̂i × ûiÞ � ez = sinðθiÞ29,37, where the hats denote
vectors normalized to 1 and ez is a unit vector in the direction of z axis.
Figure 2A shows the experimental trajectories of θ for a single active
particle with v0 = 2.16μms−1 and three different delays. For short
delays, θ fluctuates with a small amplitude around zero (Fig. 2A top).
The fluctuations increase with the delay and lead to a flat-top prob-
ability density of the propulsion angle for δt ≈0.87 s (Fig. 2A middle).
At larger delays (δt = 1.14 s), the propulsion angle fluctuates around a
stable nonzero value that changes its sign intermittently (Fig. 2A bot-
tom), corresponding to a bimodal probability density p(θ) (Fig. 2C).
The periods of consistent chirality increase in durationwhen the delay
is increased further. At δt = 1.4 s, the propulsion angle transiently
fluctuates around ±80°. Under these conditions, the cohesion of the
particle to the target becomes marginal as the typical particle velocity
is almost tangential to the target particle circumference. As a result,
the distance ∣r(t)∣ of the particle from the origin starts to fluctuate
more strongly, as shown in the position histograms in Fig. 2B.

The net propulsion angle is the result of angular displacements
ϕ(t) of the particle position acquired due to the perception–action
delay during the period [t − δt, t]:

θðtÞ=
Z t

t�δt
ωðt0Þdt0 =ϕðtÞ � ϕðt � δtÞ=ffðûðtÞ,� rðtÞÞ: ð2Þ

Here, ϕ(t) is the polar angle of the active particle in polar
coordinates centered in the target particle, and we introduced
ωðtÞ= _ϕðtÞ as its corresponding angular velocity (Fig. 2C). The

observed dynamics can be understood by considering the active
particle and the target particle in physical contact. Their distance is
then constrained to be the sum of their radii (R = 2a =〈∣r(t)∣〉) and
the active particle slides around the target particle with an angular
velocity ωðtÞ=ω0 sinðθðtÞÞ, where ω0 = v0/R is the natural angular
velocity for tangential propulsion with θ = ±π/2. As sketched in
Fig. 3A, assuming a constant angular velocity ω with θ =ωδt, the
solutions to the equation for θ are given by the intersections of a
sine function and a linear function,

ðω0δtÞ�1θ = sinðθÞ: ð3Þ

For ω0δt < 1, there is a single intersection at θ = 0, indicating a
stable non-rotational state. For 1 <ω0δt < π/2, the non-rotational
state becomes unstable and two counter-rotational metastable
solutions arise. For ω0δt > π/2, the rotating solutions correspond to
∣θ∣ > π/2, and the radial component of propulsion becomes positive
(repulsive), driving the active particle away from the target particle.
As a result, the orbit “takes off” and its radius R increases until a new
stable orbit with R = 2v0δt/π > 2a and ∣θ∣ = π/2 is reached. For small
particles (a→ 0), the distance of the swimmer to the target position
can thus, in principle, vanish (R→ 0), and the rotating orbits can
even occur at arbitrarily short programmed delays (δt→ 0). Retar-
ded attraction hence always leads to rotational orbitalmotion with a
delay-dependent radius23. In the experiment, due to the presence of
the fixed central particle, the smallest attainable orbit radius R = 2a
is given by the particle diameter. Adding Brownian fluctuations to
the deterministic Eq. (3) results in the nonlinear delayed stochastic
differential equation _ϕðtÞ=ω0 sin ϕðtÞ�ð ϕðt � δtÞÞ+ ffiffiffiffiffiffiffiffiffiffiffiffi

2D0=R
2

p
ηðtÞ,
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Fig. 2 | Propulsion angle at the different programmed delay. A Trajectories of
the propulsion angle θ(t) of an active particle at three different delays (top: δt =
0.3 s, middle: δt =0.87 s, and bottom: δt = 1.14 s) for its attraction towards a target
particle. The velocity of the active particle is v0 = 2.16μms−1.B Propulsion angleθ(t)

vs. the distance ∣r(t)∣ of the particle from the target center. C Histograms of the
propulsion angle over the whole trajectory. The delay for the individual panels in
columns (B, C) is indicated on the left of the corresponding row.
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where D0 ≈ 0.0642 μm2 s−1 denotes the translational diffusion coef-
ficient of the active particle and η(t) white noise. To solve this
equation, we approximated _ϕðtÞδt by θ(t) and expanded the
sinðϕðtÞ � ϕðt � δtÞÞ in a Taylor series around δt = 0 up to the third
order in δt. We dropped the term proportional to ϕ⃛(t) to secure the
stability of the resulting equation38 (for details, see Sec. 3 of Sup-
plementary Information). The resulting noise term

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8D0=ðω0δtRÞ2

p

turned out to be inaccurate compared to experimental and simu-
lation data. We, therefore, introduce an effective diffusion coeffi-
cient Dθ as a free parameter in the noise term in Eq. (4) to describe
the rotation of the active particle around the target as the angular
Brownian motion

_θ=
1

3δt
θ2
± � θ2

h i
θ+

ffiffiffiffiffiffiffiffiffi
2Dθ

p
η ð4Þ

with

θ± = ±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6 1� 1

ω0δt

� �s
: ð5Þ

Eq. (4) yields the stationary solutions 0 and θ± with the
bifurcation point ω0δt = 1, for the transition from a non-rotational
to a rotational state. The data points in Fig. 3B display the
experimentally obtained maxima of the histograms p(θ) of the
propulsion angle (see Fig. 2C) as a function of ω0δt. The transition

points in the experiments are located at lower values of the control
parameter ω0δt, due to the mentioned instrumental delay Δt in the
feedback loop of the experimental setup. This instrumental delay
between the most recent exposure to the camera and the laser
positioning affects the motion direction beyond the programmed
delay δt34,39, causing an earlier onset of the transition to a stable
rotation. The dashed line in Fig. 3B shows the theoretical predic-
tion, which includes both the instrumental delay Δt and the pro-
grammed delay δt, as detailed in the Supplementary Information
(Eq. (11)).

The Langevin equation (4) can be interpreted as a dynamical
equation for the position θ of an overdamped Brownian particle with
diffusion coefficient Dθ in a quartic potential (see derivation in Sec. 3
of Supplementary Information),

UðθÞ= 1
δt

1
ω0δt

� 1
� �

θ2 +
1
12

θ4
� �

, ð6Þ

which allows to classify the observed instability of the isotropic state as
a normal supercritical pitchfork bifurcation40. The potential can also
directly be extracted from the experimental data (Fig. 3B) by fitting
the histogram p(θ) with a (normalized) Boltzmann distribution
expð�UðθÞ=DθÞ=Z at the effective temperature Dθ. The effective tem-
perature thus links the measured potential of mean force�Dθ logpðθÞ
to Eq. (6).

Fig. 3 | Transition to a rotational dynamical state for a single active particle.
A Graphical construction of condition (3) for a transition from an non-rotational
state (red-shaded region) to a rotational state (green-shaded region). The red line
(sin θ) and the black dashed line with slope 1/(ω0δt) intersect at several θ. The
solution θ = θ+ in the green region and its chirally inverse image θ− in the third
quadrant (not shown) correspond to co- and counter-clockwise rotation.
B Experimentally measured propulsion angles (maxima of the histograms in
Fig. 2C) as a function of ω0δt, exhibiting a bifurcation at ω0δt ≈0.76. The dashed
line corresponds to the analytical prediction of the theoretical model (5),
neglecting the inevitable instrumental delayΔt. The solid line shows the solution of
the refined theoretical model, which includes the instrumental delay Δt = 64ms of
our setup in addition to the programmed delay δt. The colored dots indicate the
control parameter values studied in Fig. 2 and the linked small color plots show the

corresponding potentials of mean force, determined from the propulsion angle
histograms in Fig. 2C, together with a fit of the refined analytical model, including
the instrumental delay Δt (see Sec. 2.2 and 3 of Supplementary Information). The
only free parameter for fitting is the effective temperature of the system.
C Relaxation time τ of a single active particle as determined experimentally from
the autocorrelation of the propulsion angle fluctuations (Eq. (8), data points). The
solid lines correspond to the refined version of the theoretical prediction (Eq. (7)),
including the instrumental delay Δt (see Sec. 2.2 of Supplementary Information for
details). The coloreddots have the samemeaning as in panel (B).DTransition rates
between the two rotational states obtained from the experiments (circles) plotted
with the predictions from Kramers’ theory, Eq. (9), with a global fit parameter
Dθ =0.05 s−1 (solid line) andDθ fitted to the probability distribution p(θ) separately
for each value ω0δt (squares). Error bars represent the standard error.

Article https://doi.org/10.1038/s41467-022-35427-7

Nature Communications |           (2023) 14:56 4



The latter resembles the Landau free energy at a second-order
phase transition41. For readers familiar with this framework, this
mathematical analogy allows to shortcut the following analysis,
the details of which are given in Sec. 3 of the Supplementary
Information. Note, however, that we are not discussing a thermo-
dynamic phase transition but merely a dynamical bifurcation,
here. The bifurcation and its potential energy landscape are not
due to strong many-particle couplings, but to the interaction of
the single active particle with its own past image. In Landau’s
theory, the control parameter 1 − ω0δt maps onto the dimension-
less distance to the critical temperature. Both the activity ω0 and
the delay δt favor the transition to the symmetry-broken state.
Hence, at high propulsion speeds, already short delays can give
rise to rotating orbits. The inverse of the second derivative of U(θ),
corresponding to the static susceptibility in Landau theory, gives

the time τ (Eq. (7)) to relax in the (meta-)stable states,

τ =
δt
2

1
ω0δt

� 1
� ��1

ω0δt < 1

� δt
4

1
ω0δt

� 1
� ��1

ω0δt > 1:

8><
>: ð7Þ

We determine τ experimentally via C(τ) from the autocorrelation
function,

CðtÞ= hδθðt0 + tÞδθðtÞit0
hδθðt0Þ2it0

ð8Þ

of fluctuations of the propulsion angle δθ(t) = θ(t) − 〈θ(t)〉, as C(τ) = 1/e
(Fig. 3C). The experimental data (circles) is compared to Eq. (7)
(dashed line), and to an improved model prediction (solid line) that

Fig. 4 | Collective rotation of 15 particles attracted to a single target particle.
A Sketch of the shell structure and radii. B Bifurcation of the most probable
propulsion angle as a function of the control parameter ω0δt for a (calibrator)
propulsion speed of v0 = 2.06 μm s−1. The red dots are obtained from the inner
shell particles at a typical distance of Rin = 2.18 μm, while the green dots
denote the outer shell particles at Rout = 4.47 μm. The dashed line corresponds
to the theoretical single-particle prediction, including the instrumental delay
Δt = 70ms. C Average velocity field of active particles at δt = 0.81 s when the
spontaneous rotation of the inner shell is constantly disrupted by the non-
rotating outer shell, at δt = 1.35 s when the two shells are counter-rotating,

and at δt = 1.65 s when both shells are co-rotating. The arrows and colors
denote the average direction of motion. D Snapshot of the active particles
and their propulsion directions corresponding to (C) at δt = 1.35 s. The
repulsion induced by the flow and temperature fields of the inner shell causes
a bias for the outer shell rotation. E Sketch of the flow and temperature fields
induced by the laser (green dot) around an active particle, and the resulting
repulsion. F Schematic sketch of the presumed magnitude of the bias caused
by the temperature and flow fields on the rotation of the outer shell, as a
function of the propulsion angle θin of the inner shell particles (see Sec. 5
of Supplementary Information).
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also takes into account the inevitable instrumental delay Δt, as dis-
cussed in Sec. 3 of the Supplementary Information. The critical slowing
down of the relaxation due to an increasingly flat potential close to the
transition point at ω0δt = 1, corresponding to the potential plot in the
middle of Fig. 3B, is thereby nicely confirmed, without any free
parameter.

While the rotational orbits can be inferred from a purely deter-
ministic model excluding Brownian motion, the observed sponta-
neous reversal of the chirality is driven by fluctuations in the
propulsion angle and, thus, by the (non-equilibrium) noise in the sys-
tem. It corresponds to transitions between the minima ±θ± of the vir-
tual potential, Eq. (6). We may thus apply Kramers’ theory to estimate
the corresponding transition rate as

k =

ffiffiffi
2

p

π
∣ω0δt � 1∣
ω0δt

2 exp � 3
δtDθ

1
ω0δt

� 1
� �2

" #
: ð9Þ

The effective temperatureDθdriving thefluctuations in the virtual
potential is treated as a fit parameter. Figure 3D displays the experi-
mentally measured transition rates, obtained from the observedmean
residence times of θ in the two potential wells. They are in good
agreement with Eq. (9), despite the hybrid equilibrium/non-equili-
brium origin of the noisy dynamics.

Multiple particles
As demonstrated in the previous section, the rotation observed in our
experiments results from a spontaneous symmetry breaking in the
dynamics of a single active particle. It originates from the particle’s
retarded self-propulsion to a target, which differs from standard
explanations of rotational dynamics in overdamped systems, which
usually blame mutual (“social”) interactions between multiple
agents3,9,12,42. As we demonstrate in Fig. S9B, when adding up to five
more active particles to the system, each of them exhibits the same
rotation andbifurcation as a single swimmer. Steric, hydrodynamic, and
thermophoretic interactions among the particles then synchronize and
stabilize their motion, aligning their sense of rotation. So the system
exhibits collective behavior, but the dynamical symmetry breaking to a
chiral dynamical state is not primarily due to the mutual interactions.

Somewhat larger numbers of particles organize into multiple
rotating shells. Figure 4 summarizes the key results obtained for an
ensemble of 15 active particles attracted to the target particle with the
same programmed and intrinsic delays δt and Δt, respectively. For the
considered range of time delays, the active particles form two tightly
packed shells around the target particle (Fig. 4A). The typical distance
of the inner shell particles to the target is about half that of the outer
shell, Rout ≈ 2Rin = 4a. So based on the single-particle picture alone, the
particles in the inner and outer shells swimming at the same speed
would be expected to start rotating at different delays. However, in
reality, the inter-particle interactions in the compact cluster strongly
correlate with the particle motion and quantitatively change the pic-
ture. Compared to the theoretical prediction, ω0δt =0.73, we observe
that for v0 = 2.06μms−1 the transition to the rotational phase of the
inner shell is postponed to ωin

0 δt � v0δt=R
in ≈ 0.83, corresponding to

δt = 0.9 s (see the rightmost red data point lying on the horizontal axis
in Fig. 4B). Slightly below the transition, the inner shell exhibits alter-
nating periods of rotational and stationary states. Meanwhile, the
stationary outer shell compresses the inner shell due to its inwards-
pointing propulsion direction (Fig. 4C, left). Figure. 4C displays the
velocity fields of the particles averaged over their trajectories with
three different delays. The bifurcation for the outer shell is located at
ωout

0 δt � v0δt=R
out ≈0.41, which corresponds to the same value δt =

0.9 s of the delay at which the inner shell undergoes its bifurcation to
the rotational state (see Fig. 4B and SupplementaryMovies S4–S6). For
delays slightly above the transition, 0.9 s < δt < 1.41 s, the two shells
rotate in opposite directions, as shown in the middle plot of Fig. 4C.

The simultaneous transition and the counter-rotation of the two shells
suggest that the inner shell particles generate backflows opposite to
their propulsion direction, thereby repelling the outer shell particles
and facilitating their transition to the rotational state, as schematically
depicted in Fig. 4D–F. These backflows are presumably caused by the
directional hydrodynamic and thermophoretic interactions. The sur-
face temperature gradient across each particle creates a thermo-
osmotic surfaceflow that propels theparticle43. If theparticlemotion is
opposed by an external force, such as the steric force due to the
immobilized target particle, the slowed-down particle acts as a pump,
creating a hydrodynamic outflow at its hot side (Fig. 4D and Sec. 2.5
and 5.2 of Supplementary Information). Furthermore, thermophoretic
interactions arise from temperature gradients across the surface of a
particle caused by its neighbors33. These are commonly repulsive, as
found, e.g., for Janus particles in external temperature gradients33. We
have carried out finite element simulations of the flow field around a
mobile and an immobile self-propelling swimmer (see Sec. 2.5 of Sup-
plementary Information). The overall near-field hydrodynamic inter-
actions are found to be quite complex, due to many interacting
particles and the nearby substrate surface44–46. They also depend on
the propulsion angle θ. An increasing innershell propulsion angle
results in a changing direction and magnitude of the rotational bias
onto the outer shell, which presumably varies as sketched in Fig. 4F
(see Sec. 5 of Supplementary Information). As a result, for δt ≥ 1.41 s,
the two shells predominantly rotate in the same sense, as shown in
Fig. 4C, right. The transition from counter- to co-rotation shells cor-
responds to the signflipof the bias atθin ≈ 67∘. At even longer delays, θin

tends to reach 90∘, and thus the inner shell tries to take off and expand
against the compression exerted by the outer shell. These competing
tendencies lead to particle exchange between the two shells. While we
currently cannot separate thermophoretic and hydrodynamic effects
in the experiment, hydrodynamic interactions may be expected to be
more important here than for a single free particle in a temperature
gradient: firstly, due to the collective character of the dynamics, and
secondly, due to the pump effect caused by the partial blocking of the
self-phoretic motion of the individual swimmers (see Sec. 2.5 and 5.2
of Supplementary Information). These features could provide a link
between our experiments and the swarming observed in bacterial
colonies47,48.

Discussion
We have demonstrated above that the motion of an active particle
induced by the delayed attraction to a target point can spontaneously
undergo a transition from a diffuse isotropic “barometric” state to a
dynamical chiral state, upon increasing the activity and/or the delay
time. The transition is well described by a pitchfork bifurcation
accompanied by a characteristic critical slowing down of the
response40. Similar to certain mechanical analogs49, the single-particle
dynamics thus already exhibit non-trivial features more commonly
associated with (mean-field) phase transitions in strongly interacting
passive many-body systems. This can be explained by noting that the
deterministic part, _ϕðtÞ=ω0 sin ϕðtÞ � ϕðt � δtÞð Þ, of our stochastic
delay differential equation can also be understood as the dynamical
equation for a single Kuramoto phase oscillator50,51, with vanishing
eigenfrequency and coupling strength ω0, which is trying to synchro-
nize with its own past state. In the chiral state, the particle orbits
around the target point (the central obstacle is optional). The orbiting
motion is stable against noise, but its sense of rotation is only tran-
siently maintained. This should be contrasted with the chiral states
resulting from non-reciprocal coupling in the time-local Kuramoto
model (without delay), as discussed by ref. 52, which hinges on the
stabilization by many-body cooperativity. Based on our results, we
suggest that for the single retarded oscillator, the infinite number of
relaxation modes encoded in the time-delayed equation of motion
play a similar role53,54.
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As we have shown, the nonlinear dynamics of our experimental
system can be described by an approximate analytical model, which
explains the emergence of a self-generated quartic virtual potential.
While such potentials are frequently found in descriptions of phase
transitions and collective effects in active-particle ensembles, fol-
lowing various behavioral rules29,30, we reiterate that themechanism
is a different one, here. Due to the activity and the (programmed)
delay, it already occurs for a single active particle aiming at a spa-
tially fixed target. In a whole swarm of particles that are all attracted
to a common target, which might be its own perceived center of
mass, the single-particle bifurcation is preserved. Inter-particle
collisions merely synchronize, renormalize, and stabilize the rota-
tional states of the individual particles. Upon close contact,
hydrodynamic and thermophoretic interactions become important
and help the swimmers to self-organize into co- and counter-
rotating orbits. In biologicalmotile ensembles, frombacteria to fish,
similar hydrodynamic mechanisms may be at work, although pre-
cise details and scales may differ widely45,55–57. The corresponding
many-body effects can be subtle and may elude coarse-grained
simulations and theories. This underscores the importance of well-
controlled experimental model systems that may act as “hybrid
simulations”, combining computer-controlled active particles with
real-world environments.

To conclude, while time delays are an unavoidable outcome of
coarse-graining microscopic descriptions of the feedback pro-
cesses in natural systems (cf. Table S1), they are often neglected in
low-dimensional models of active particle collective effects5,10. In
this respect, our model system provides a new perspective, as it
takes the unavoidable systematic delays in the dynamics seriously
and explores their generic effects. We find that, in overdamped
systems, retardation plays a similar role as added inertia. Both
effects lead to persistence and associated “aiming errors” in particle
dynamics. In this sense, our analysis can provide a template for an
entire class of motile ensembles exhibiting spontaneous rotational
dynamics caused by aiming errors—as such, are associated with
microswimmer navigation strategies employing “vision-cone”29,30 or
“acceptance-angle”27,36 criteria. In fact, the effects of the time delay
may be even richer20,24,54. While we considered only a positive delay,
i.e., synchronization with the past, above, sophisticated biological
organisms also possess predictive capabilities to extrapolate the
current state into the future58,59. These can, to a first approximation,
be incorporated in the form of a negative time delay. The inclusion
of positive and negative delays may therefore provide a new, “more
physical” perspective on phenomenologically extracted, rather
sophisticated rules like collision avoidance and alignment interac-
tions, commonly postulated as sources of emerging complex
adaptive responses in living many-body systems.

Methods
Sample preparation
Samples were prepared using two glass coverslips (20mm× 20mm,
24mm× 24mm) to confine a thin liquid layer (3 μm thickness) in
between. The edges of one coverslip are sealed with a thin layer of
PDMS (polydimethylsiloxane) to prevent leakage and evaporation.
The liquid film used in the sample is composed of 2.19-μm-diameter
gold-coated melamine formaldehyde (MF) particles (microParticles
GmbH) dispersed in 0.1% Pluronic F-127 solution. The latter pre-
vents the cohesion of the particles and adsorption to the cover slide
surface. The surface of the MF particles is speckled uniformly with
gold nanoparticles of about 8 nm diameter with a total surface
coverage of about 10% (Fig. S3A). SiO2 particles (2.96 μm in dia-
meter, microParticles GmbH) are added into the solution to keep
the thickness of the liquid layer at about 3 μm. Finally, 0.3 μl of the
mixed particle suspension is pipetted on one of the coverslips, for
which the other serves as a lid.

Experimental setup
The experimental setup (see Sec. 2 of Supplementary Information)
consists of an inverted microscope (Olympus, IX71) with a mounted
piezo translation stage (Physik Instrumente, P-733.3). The sample is
illuminated with an oil-immersion darkfield condenser (Olympus, U-
DCW, NA 1.2–1.4) and a white-light LED (Thorlabs, SOLIS-3C). The
scattered light is imaged by an objective lens (Olympus, UPlanApo ×
100/1.35, Oil, Iris, NA 0.5–1.35) and a tube lens (250mm) to an EMCCD
(electron-multiplying charge-coupled device) camera (Andor, iXon
DV885LC). The variable numerical aperture of the objective was set to
a value below the minimum aperture of the darkfield condenser.

The microparticles are heated by a focused, continuous-wave
laser at a wavelength of 532nm (CNI, MGL-III-532). The beam diameter
is increasedbya beamexpander and sent to an acousto-optic deflector
(AA Opto-Electronic, DTSXY-400-532) and a lens system to steer the
laser focus in the sampleplane. Thedeflectedbeam is directed towards
the sample by a dichroic beam splitter (D, Omega Optical, 560DRLP)
and focused by an oil-immersion objective (Olympus,UPlanApo × 100/
1.35, Oil, Iris, NA0.5–1.35) to the sample plane (w0 ≈0.8μmbeamwaist
in the sample plane). A notch filter (Thorlabs, NF533-17) is used to
block any remaining back reflections of the laser from the detection
path. The acousto-optic deflector (AOD), as well as the piezo stage, are
driven by an AD/DA (analog-digital/digital-analog) converter (Jäger
Messtechnik, ADwin-Gold II). A LabVIEW program running on a desk-
top PC (Intel Core i7 2600 4 × 3.40GHz CPU) is used to record and
process the images as well as to control the AOD feedback via the AD/
DA converter.

Data availability
All data in support of this work is available in the manuscript or
the Supplementary Information. Further data and materials are avail-
able from the corresponding author upon request.
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Chemist Manfred Eigen 
regarded received wisdom as 
a challenge rather than a con-

straint. His techniques for investigat-
ing ‘immeasurably fast’ reactions and 
their application to biological systems 
opened up new avenues, in fields from 
fundamental kinetics to the forma-
tion of protein complexes. This work, 
conducted in the 1950s at the Max 
Planck Institute (MPI) for Physical 
Chemistry in Göttingen, won him 
a share (with Ronald Norrish and 
George Porter) of the 1967 Nobel 
Prize in Chemistry. He went on to 
develop theories to account for the 
self-organization of biological mole-
cules, and he was a creator of the new 
field of evolutionary biotechnology.

At a time when most institutes and 
departments were split along discipli-
nary lines, Eigen argued that under-
standing organisms at the level of 
their chemical interactions demanded 
an interdisciplinary approach. After 
years of lobbying, he got his wish in 1971, 
when the Max Planck Society (MPS) cre-
ated the MPI for Biophysical Chemistry in 
Göttingen. ‘It is not the research area that 
counts,’ ran the founding principle of the lab-
oratory: ‘it is the excellence of the individuals’. 
He was less successful at persuading the MPS 
to found a institute for science and music.

Eigen was born in Bochum, Germany, 
where his father was a cellist. By 15, he 
was himself a proficient pianist with the 
potential for a future solo career. He’d also 
developed an interest in chemistry, doing 
experiments in a lab at home. But, in 1942, 
as allied bombers began to shift the balance 
against Germany in the Second World War, 
his class was drafted to the anti-aircraft bat-
teries defending the city; two years later, he 
was conscripted into the German air force.

When Germany surrendered in May 1945, 
2 days before his 18th birthday, Eigen was sta-
tioned at Salzburg airport in Austria, which 
was occupied by US troops. Captured as pris-
oners of war, Eigen and a friend managed to 
escape, and walked roughly 1,000 kilometres 
back to Bochum over the next month. Hav-
ing not touched a piano for three years, he 
decided to make his career in science. The 
University of Göttingen accepted him as a 
student of geophysics — the only branch of 
physics with room for him, when so many 
older students were returning from military 
service. He studied with some of the country’s 

leading physicists, including Nobel prizewin-
ners Werner Heisenberg and Wolfgang Paul.

In 1953, after a doctorate on the specific 
heat of heavy water, Eigen moved to the 
recently founded MPI for Physical Chemistry 
to work with its director, Karl Friedrich Bon-
hoeffer. In a standard textbook co-authored 
by his former supervisor, Arnold Eucken, 
Eigen found reactions described as “immeas-
urably fast”. Refusing to accept such uncer-
tainty, by 1954, he had developed a way of 
disturbing the equilibria in chemical solutions 
with pulses of intense electrical or ultrasonic 
energy, and using spectroscopy to time how 
long it took for equilibrium to be restored. 
Such ‘relaxation techniques’ could determine 
the rate of a neutralization reaction that took 
place in nanoseconds — orders of magnitude 
faster than any previously measured.

His success made it possible for scientists 
to study reactions catalysed by enzymes that 
drive all processes of life. Eigen developed 
concepts to explain how replicating macro-
molecules on the prebiotic Earth might have 
evolved into replicating organisms. In 1971, 
for example, he posed the paradox that with-
out error-correction enzymes, the length of 
a nucleic acid would be limited because, in 
larger molecules, mutations would destroy 
the information content of subsequent gen-
erations. But this maximum size (or error 
threshold) was too small to encode an error-
correcting enzyme. Eigen’s paradox still 

challenges theoretical biologists. 
From the early 1980s, he developed 

these concepts into evolutionary bio-
technology at the MPI. His colleagues 
built ‘evolution reactors’ that drove the 
evolution of viruses and other replicat-
ing molecules under controlled con-
ditions to investigate how pathogens 
evade the immune system, or to search 
for new drugs. Eigen helped to found 
two companies to exploit this technol-
ogy, Evotec Biosystems (now Evotec 
AG) and DIREVO Biotech (bought 
by Bayer Healthcare in 2008).

Although he oversaw the design and 
location of the MPI for Biophysical 
Chemistry, Eigen declined the post of 
permanent director, instead heading 
its Department of Biochemical Kinet-
ics until he retired in 1995. “His way of 
solving problems with the best factual 
and transparent solution instead of 
imposing his unquestioned author-
ity shaped the spirit of the institute,” 
wrote MPI colleagues in an article cel-

ebrating Eigen in his 90th year (H. Jäckle et 
al. Eur. Biophys. J. 47, 319–323; 2018). Eigen 
remained active after retirement, dividing 
his time between Göttingen and the Scripps 
Research Institute in La Jolla, California. 

Communication with the wider public was 
important to him. He published three books 
aimed at the general reader: Laws of the Game 
(1983), Steps Towards Life (1992) and From 
Strange Simplicity to Complex Familarity 
(2013). All were written jointly with his long-
standing scientific partner, Ruthild Winkler-
Oswatitsch, who became his second wife.

He chaired the council of Europe’s life-sci-
ences organization EMBO through delicate 
negotiations to establish a base in Heidelberg 
in the early 1970s. And in his 12 years presid-
ing over the German Academic Fellowship 
Foundation, he pushed for the advancement 
of young scientists through doctoral grants. 
He remained an impressive amateur pianist, 
sometimes playing Mozart’s concertos after 
scientific meetings. A man of great personal 
elegance, with a taste for striking ties, his quest 
for elegant solutions widened the field of view 
for generations of researchers that followed. ■

Georgina Ferry is a science writer from 
Oxford, UK, specializing in the history of the 
life sciences. Her books include biographies 
of the crystallographers Dorothy Crowfoot 
Hodgkin and Max Perutz.
e-mail: mgf@georginaferry.com

Manfred Eigen
(1927–2019)

Observer of fast reactions in the laboratory and in life.
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John Horton Conway
(1937–2020)

Playful master of games who transformed mathematics.

John Horton Conway was one of the 
most versatile mathematicians of the 
past century, who made influential con-
tributions to group theory, analysis, 
topology, number theory, geometry, 

algebra and combinatorial game theory. His 
deep yet accessible work, larger-than-life 
personality, quirky sense of humour and 
ability to talk about mathematics with any and 
all who would listen made him the centre of 
attention and a pop icon everywhere he went, 
among mathematicians and amateurs alike. 
His lectures about numbers, games, magic, 
knots, rainbows, tilings, free will and more 
captured the public’s imagination.

Conway, who died at the age of 82 from 
complications related to COVID-19, was a 
lover of games of all kinds. He spent hours 
in the common rooms of the University of 
Cambridge, UK, and Princeton University 
in New Jersey playing backgammon, Go and 
other diversions, some of his own creation. 
Several of Conway’s most celebrated contribu-
tions were made while he was thinking about 
games and their strategies. Perhaps his great-
est discovery was a surprising correspondence 
between numbers and games that led him to 
a truly gigantic system, the surreal numbers, 
which stunned the mathematics community. 
It contained not only the positive and negative 
real numbers that we all know, but also new 
infinitely large numbers, infinitesimally small 
ones, and all sorts of new numbers in between. 

Conway’s work on surreal numbers emerged 
from the influential research project and book  
Winning Ways for your Mathematical Plays 
(1982), a compendium of information on the 
theory of games, written with Elwyn Berlekamp 
and Richard Guy. This fascination with games 
also led Conway to develop the Game of Life, 
a cellular automaton in which the pattern of 
live or dead cells in a two-dimensional grid 
evolves according to a set of rules for the ‘birth’ 
and ‘death’ of each cell, based on the status of 
its nearest neighbours. The simplicity and 
accessibility of this game was popularized in 
1970 by Scientific American columnist Martin 
Gardner. By the mid-1970s, it was estimated that 
one-quarter of the world’s computers were run-
ning Conway’s Game of Life as their screensaver.

Conway, who was the John von Neumann 
professor of mathematics at Princeton 
University before his retirement in 2013, was 
born in Liverpool, UK, in 1937. His father made 
his living playing cards, and later worked as a 

chemistry laboratory technician at a local high 
school attended by George Harrison and Paul 
McCartney. Conway, like his mother, was an 
avid reader. He showed early interests in math-
ematics; by the age of 11, he wanted to be a 
mathematician at Cambridge. He received his 
PhD from the University of Cambridge in 1964 
under the advisership of Harold Davenport, 
was subsequently hired at Cambridge as a lec-
turer, and became professor in 1983. In 1987, 
he moved to Princeton.

Conway first attained fame in 1968 for 
determining all 8,315,553,613,086,720,000 
symmetries of the Leech lattice — a remark-
ably regular arrangement of points in 
24-dimensional space discovered by John 
Leech in 1967. This led to his discovery of the 
Conway simple groups, which were funda-
mental in the classification of finite simple 
groups — one of the capstone achievements 
of twentieth-century mathematics. 

Conway had a primary role in researching 
and assembling the iconic symmetry book 
ATLAS of Finite Groups (1985). His deep 
knowledge of symmetries led him to propose, 
with his ATLAS co-author Simon Norton, the 

Monstrous Moonshine conjectures. These, 
for the first time, seriously connected finite 
symmetry groups to analysis — and thus dis-
crete maths to non-discrete maths. Today, 
the Moonshine conjectures play a key part 
in physics — including in the understanding 
of black holes in string theory — inspiring a 
wave of further such discoveries connecting 
algebra, analysis, physics and beyond.

Conway’s discovery of a new knot invariant 
— used to tell different knots apart — called the 
Conway polynomial became an important 
topic of research in topology. In geometry, he 
made key discoveries in the study of symme-
tries, sphere packings, lattices, polyhedra and 
tilings, including properties of quasi-periodic 
tilings as developed by Roger Penrose. 

In algebra, Conway discovered another 
important system of numbers, the icosians, 
with his long-time collaborator Neil Sloane. 
In number theory, Conway showed that every 
whole number is the sum of at most 37 fifth 
powers. He also developed the 15-theorem 
(with his student William Schneeberger) and 
the 290-conjecture; these were vast general-
izations of the four-squares theorem, proved 
by eighteenth-century mathematician Joseph-
Louis Lagrange, which states that every positive 
whole number is the sum of four square num-
bers (for example, 21 is the sum of 16, 4, 1 and 0). 

Conway was a memorable teacher and 
speaker, and the many tricks he performed 
to illustrate mathematical concepts included: 
stating immediately the day of the week for 
any date in history, twirling a hanger with a 
penny balanced on its inside edge, contorting 
his tongue into a variety of shapes, balancing 
objects on his chin, and delivering entire lec-
tures in which every word he said had only 
one syllable. 

He loved to talk about mathematics and 
games, as well as history, etymology and 
philosophy. His contributions to culture, 
through his work and outreach, will have a last-
ing impact. For the remarkable profundity of 
his mathematical discoveries — and the playful 
and generous way in which he shared these 
with others — he will be sorely missed.

Manjul Bhargava is the R. Brandon Fradd 
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graduate advisee, and later colleague, of John 
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“His lectures about numbers, 
games, magic, knots, 
rainbows and more captured 
the public’s imagination.”
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